Rational function: Vertex form – Transformation and Inverse

By: Hung Trinh – Benson High (Nov. 2021)

Leading question

Are these two functions $\frac{x+2}{x-1}$ and $\frac{1}{x}$ in the same family? If so, how do we describe the transformation of the "child" function and find its inverse using the "common" method of "undo"?

1. Vertex form

The "parent" of rational function has the form $f(x) = \frac{1}{x}$,

therefore, its vertex form is $f(x) = \frac{c}{(x+h)} + k$

Given the rational function $y = \frac{ax+m}{bx+n}$ convert it to vertex form.

Step 1. Divide by function by b (coefficient of the denominator) $y = \frac{\frac{a}{b}x + \frac{m}{b}}{x + \frac{n}{b}}$

Step 2. Rewrite the numerator as a multiple of denominator

$$y = \frac{\frac{a}{b}\left(x + \frac{n}{b}\right) + \frac{m}{b} - \frac{an}{b^2}}{x + \frac{n}{b}} = \frac{\frac{a}{b}\left(x + \frac{n}{b}\right) + \frac{mb - an}{b^2}}{x + \frac{n}{b}}$$

Step 3. Split the numerator $y = \frac{a}{b} + \frac{\frac{mb-an}{b^2}}{x+\frac{n}{b}}$

Back to the question, function $\frac{x+2}{x-1}$ can be rewritten as $\frac{x+2}{x-1} = 1 + \frac{3}{x-1}$. It is the child function in the family of rational function

2. Transformation

The transformation of any given function in its vertex form

$$f(x) \rightarrow af(bx \pm h) \pm k$$

where |a| indicate a quantity of vertical dilate, |b| horizontal dilate

k indicates quantity of vertical translate, h horizontal translate $a < 0 \rightarrow$ horizontal reflection and b < 0 vertical reflection

(think of keeping stretching the line will bend it backward)

For the rational function it its vertex form $y = \frac{a}{b} + \frac{\frac{mb-an}{b^2}}{x + \frac{n}{b}}$

From the parent $y = \frac{1}{x}$ it has translated vertically by $\frac{a}{b}$, horizontally by $\frac{n}{b}$ and

vertically dilate by
$$\frac{mb-an}{b^2}$$

Example 1

Define the transformation of rational function $y = \frac{x+2}{x}$

We have $y = 1 + \frac{2}{x}$ (move up 1, stretch by 2)

Example 2

Define the transformation of rational function $y = \frac{3x-2}{x+2}$

We have $y = \frac{3(x+2)-8}{x+2} = 3 - \frac{8}{x+2}$

(move up 3, left 2, stretch by 8 and flip over x-axis)

Example 3

Define the transformation of rational function $y = \frac{2x-3}{3x+2}$

We have
$$y = \frac{\frac{2}{3}x - \frac{3}{3}}{x + \frac{2}{3}} = \frac{\frac{2}{3}\left(x + \frac{2}{3}\right) - \left(\frac{4}{9} + \frac{3}{3}\right)}{x + \frac{2}{3}} = \frac{2}{3} - \frac{\frac{13}{9}}{x + \frac{2}{3}}$$

(move up 2/3, left 2/3, stretch by 13/9 and flip over x-axis)

Back to the question, function $\frac{x+2}{x-1}$ can be rewritten as $\frac{x+2}{x-1} = 1 + \frac{3}{x-1}$. It has moved up 1, right 1 and stretch by 3 times

3. Inverse

Derive from vertex form $f(x) \rightarrow af(bx \pm h) \pm k$

where |a| indicate a quantity of vertical dilate, |b| horizontal dilate

k indicates quantity of vertical translate, h horizontal translate $a < 0 \rightarrow$ horizontal reflection and b < 0 vertical reflection

The inverse function can be found by just doing some switching $a \leftrightarrow b$ and $h \leftrightarrow k$

$$f^{-1}(x) \to (b^{-1})f^{-1}(a^{-1}(x \pm k)) \pm h$$

where |a| indicate of **horizontal** dilate, |b| vertical dilate

k indicates a quantity of horizontal translate, h vertical translate

 $a < 0 \rightarrow$ horizontal reflection and b < 0 vertical reflection

Find the inverse function of $y = \frac{ax+m}{bx+n}$

Step 1: Rewrite in its vertex form (See above)

$$y = \frac{ax+m}{bx+n} = \frac{a}{b} + \frac{\frac{mb-an}{b^2}}{x+\frac{n}{b}}$$

Step 2: Solve for x by cancel the term a/b

$$y = \frac{a}{b} + \frac{\frac{mb-an}{b^2}}{x + \frac{n}{b}} \to y - \frac{a}{b} = \frac{\frac{mb-an}{b^2}}{x + \frac{n}{b}}$$

And apply the property of equal fraction (Switch places) then isolate the x

$$\Rightarrow x + \frac{n}{b} = \frac{\frac{mb-an}{b^2}}{y - \frac{n}{b}} \Rightarrow x = \frac{\frac{mb-an}{b^2}}{y - \frac{n}{b}} - \frac{n}{b}$$

Step 3 Switching x and y we have
$$f^{-1}(x) = \frac{\frac{mb-an}{b^2}}{x-\frac{a}{b}} - \frac{n}{b}$$

Example 1

Find the inverse of rational function $y = \frac{x+2}{x}$

We have $y = 1 + \frac{2}{x}$

$$y-1 = \frac{2}{x} \rightarrow x = \frac{2}{y-1}$$

Switching x and y we have $f^{-1}(x) = \frac{2}{x-1}$

Example 2

Find the inverse of rational function $y = \frac{3x-2}{x+2}$

We have
$$y = \frac{3(x+2)-8}{x+2} = 3 - \frac{8}{x+2}$$

 $y = 3 - \frac{8}{x+2} \rightarrow y - 3 = \frac{-8}{x+2} \rightarrow x + 2 = \frac{-8}{y-3}$
Or $x = \frac{-8}{y-3} - 2$ Switching x and y we have $f^{-1}(x) = \frac{-8}{x-3} - 2$

Example 3

Find the inverse of rational function $y = \frac{2x-3}{3x+2}$

We have
$$y = \frac{\frac{2}{3}x - \frac{3}{3}}{x + \frac{2}{3}} = \frac{\frac{2}{3}(x + \frac{2}{3}) - (\frac{4}{9} + \frac{3}{3})}{x + \frac{2}{3}} = \frac{2}{3} - \frac{\frac{13}{9}}{x + \frac{2}{3}}$$

From $y = \frac{2}{3} - \frac{\frac{13}{9}}{x + \frac{2}{3}} \rightarrow y - \frac{2}{3} = \frac{-\frac{13}{9}}{x + \frac{2}{3}} \rightarrow x + \frac{2}{3} = \frac{-\frac{13}{9}}{y - \frac{2}{3}}$
Or $x = \frac{-\frac{13}{9}}{y - \frac{2}{3}} - \frac{2}{3}$ Switching x and y we have $f^{-1}(x) = \frac{-\frac{13}{9}}{x - \frac{2}{3}} - \frac{2}{3}$

Back to the question, function $\frac{x+2}{x-1}$ can be rewritten as $\frac{x+2}{x-1} = 1 + \frac{3}{x-1}$ and its inverse is $f^{-1}(x) = \frac{3}{x-1} + 1$

Illustration by desmos https://www.desmos.com/calculator/ufwjqrvxjz