
Computer Science 3-4

Problem Set #10: Finally…Functions!

One of things you may have noticed about C++ so far is that we use quite a lot of built in

functions to do things. For instance, the math functions sqrt(x) and pow(x,y) simplify finding

the square root of a number (do you even know how to calculate a square root by hand?) and

raising a number to a power. What is great about programming is that we can make our own

functions and use them over and over in our program, as long as we define them in a particular

way.

Fundamentally there are two parts to making our function: function declaration (sometimes

called the function prototype) and function definition. They work just like they

sound…declaration is just outlining that we have some function and later on in the program we

actually define the code that makes the function work. To declare a function, we need to do

three things: decide the return type of the function (if it even returns a value at all), give it a

clever name and decide if/how many parameters it accepts (and what kinds). Take a quick look

at the declaration of a simple power function:

This is just letting the compiler know that there is going to be a new function called power, it is

going to take in two integers as parameters and then return a single integer wherever the

function was called. Now let’s look at the actual definition of the function that would hold all

the “guts:”

We can see in the first line of the function, we’ve actually given names to integer variables we

are going to use. It is important to realize that these names will only be used inside this

function. The fancy name for this is encapsulation but it really just means that the variables are

local to the function and are hidden from the rest of the. The return command does exactly

what it sounds like; it sends the value of your variable back to the place you called the function.

You can only return one item from a function, it acts just like a break statement…if you get to

the return it sends a value back and doesn’t look at the rest of your function, so it can be a

handy trick to put these inside of if statements if you have specific actions for specific cases.

We must make sure that what we return matches the return type we specified when we

declared the function (here we have a return type of int and we are returning total, which is an

int so everything is kosher).

Suppose we wanted to make a function that didn’t actually return a value, it just performed

some task (like printing some text to the screen). Then we’d declare our function with type

void (i.e. don’t expect anything to be returned).

This is really a topic that is easier with an example, so take a look at this program that uses

custom made functions (if you check the site this code is available for download) and make sure

you watch the video where I go over this topic:

So before you move on, take a second to make sure you understand everything that is going on

in this program. The main loop should be fairly straightforward, with the exception of the calls

to our homemade functions. We’ve seen two types of functions here, one that returns a value

“rollDice” and one that just prints text to the screen “winMessage” that also takes a variable.

We had to declare the functions we were going to make at the top of our program (this is so

the compiler knows to look for new functions so we don’t get an error).

So the main reason that we want to make functions is that it helps us reuse code very

effectively and keeps us from cluttering up our main loop with large blocks of repetitive code.

Think back on the tic-tac-toe game…if you wrote a function that took in the values of the spots

(or better yet took in an array that held the spots) and then drew the board, many of you would

have saved quite a few lines of code. Similarly a checkValidMove(move,spot) function would

have let you only write those if/else statements one time, then call on your function repeatedly!

Later on we’ll talk about a way to make libraries where you save your favorite functions so you

can use them in all your programs!

Here are a few practice problems:

1. Find the Smallest Number! - Write a program that inputs three integers and passes

them to a function that returns the smallest number.

2. Prime Time – Write a function that checks to see if a number is prime and returns either

true or false (i.e. make your function a type bool and actually return a true or false

value).

3. Prime Factorization – Write a function that will print out the prime factorization of any

integer. You might find the work you did on the GCD useful and what you did on #2.

4. Temp Changer – Write two functions: one that converts from Fahrenheit to Celsius and

one that converts from Celsius to Fahrenheit. Use the setprecision function to truncate

the values to two decimal places. Use these to write a program that prints charts

showing the Fahrenheit equivalents of all Celsius temps from 0 to 100 and all Celsius

equivalent to Fahrenheit temps from 32 to 212…organize your output so it looks nice!

Here’s a link to more on setprecision for you:

http://www.cplusplus.com/reference/iostream/manipulators/setprecision/

5. More Rectangles! – write a function that takes in three arguments: width, height and a

character and then draws a rectangle using the specified character. For example,

makeRectangle(4,3,%) should draw:

%%%%

%%%%

 %%%%

Put this inside of a program that asks the user to input these three things, draws the

shape and repeats until they enter -1 as the width.

6. Reverser – Write a function that takes in an integer value of any length and returns the

number with its digits reversed (i.e. 1954 would be 4591).

7. Perfect Numbers – An integer is said to be a perfect number if the sum of its divisors,

including 1 (but not the number itself), is equal to the number. For example, 6 is a

perfect number since 1 + 2 + 3 = 6. Write a function called that checks to see if a

number is a perfect number. Use this function in a program that determines and prints

all the perfect numbers between 1 and 1000. Print the divisors of each perfect number

to confirm that the number is indeed perfect!

8. Holiday Challenge (a musical interlude) x2 – if we add #include<windows.h> we can

gain access to two fun little functions called Beep() and Sleep(). Beep takes two

arguments, a frequency (in Hz) and a duration (in ms). So to play an “A” for a half

second would be Beep(440,500). Sleep just takes a time in ms and acts like a rest (the

system will not do anything for the specified amount of time), so a half second rest is

Sleep(500). Use this information to write a synthesized version of your favorite holiday

tune (you might find it useful to google the note frequencies if you aren’t that musically

inclined). Writing functions that play choruses might be useful (or you can get fancy and

write your song as a function so you can play it in a different key or switch octaves).

