
Computer Science 3-4
Problem Set #5: While Loops continued

A quick note on libraries in C++: we have been using one library

quite extensively: <iostream>. We also took a look at the math

library; <math.h> (where we get our trig functions and sqrt()). There

are a nearly infinite collection of libraries out there and more are

being created every day. Folks generate libraries for a variety of

reasons, but typically it is because they want some very specific

functionality that isn’t already out there. Some of the more popular

ones are: OpenGL (for graphics…we’ll use a variation called SFML

later on), BOOST, Box2D to name a few.

A useful feature of one C++ library (known as stdlib.h, which is short

for standard library) is that we can generate a random number when

we need it. Here is some code to check out:

The function rand() actually returns a random integer from a very

large range; the max is around 32767 or so. We’ll use the modulus

operator (%) to dictate the range that we want. When we calculate

rand() % 1000, we actually return values from 0 to 999 (since it either

divides evenly or has up to 999 as a remainder). By adding a number

to the result we can shift the range (we just added one in the above

example, but you can shift it up however you like). This is very useful

for us!

Note the srand() function. This is a function that sets the “seed” for

the random number generator. For instance, if you wrote a program

to randomly generate 10 numbers and I did the same thing…if we

started our program off with srand(3), then we’d actually generate

the same 10 numbers. There are many reasons that we would like to

do this (mostly related to testing for potential problems, but it has

science applications as well). When we do srand(time(NULL)), we are

really saying that we want our random numbers to be generated

based on the current time (down to the millisecond), this way it will

be different every time we run the program. We only need the

srand() function to run one time for the seed to be set, so we usually

put it at the very top of our main() function if we are using random

numbers. On to the problems!

1) Your First Game! – Write a program to play a guess a number game.

The computer should be thinking of a number between 1 and 1000

and the user has to try to guess what that number is by typing in

their own number. If the user is incorrect, the computer should give

them a hint (“Your guess was too low” or “your guess was too high”)

and let them guess again. Keep track of how many guesses the

player makes and print out a message at the end that congratulates

them and prints the total number of guesses it took.

2) Challenge – Have the computer tell the player how many digits are

correct in their guess rather than if they are too high or too low (use

the code from PS#2 Challenge as a start).

Often we’ll have to set up a nested set of loops to solve a problem. This

can be a bit tricky, mainly because we need to keep track of a variety of

variables (and reset them properly). Let’s take a look at some code:

Use this basic structure to solve the following problems:

3) Print the following pattern, using horizontal tabs to separate

numbers in the same line. Let the user decide how many lines to

print (i.e. what number to start at):

4

3 3

2 2 2

1 1 1 1

4) Draw a Rectangle! – Write a program that lets the user enter the

width and height of a rectangle, then draws the rectangle to the

screen using *. For instance, if the user said 4 wide and 3 tall, the

program would print out:

* * * *

* *

* * * *

Hint - Try these test cases out before you turn in your program: 3x3,

5x4, 1x3 and 5x1.

5) Fab Factorials – Write a program that prints out a table of factorials.

For instance, if the user types in 5, then the output should be:

1! = 1 = 1

2! = 2 x 1 = 2

3! = 3 x 2 x 1 = 6

4! = 4 x 3 x 2 x 1 = 24

5! = 5 x 4 x 3 x 2 x 1 = 120

Sometimes we may want a loop to end under multiple conditions; in this

case it is often useful to use the break command. For example:

6) Challenge: The 1000
th

 Prime! – Write a program that computes and

prints the 1000
th

 prime number. Here are a few hints to get you

started:

a. You will need some variables to keep track of which prime

number you’re on and keep track of where you are in your

loop.

b. You’ll only need to test odd numbers to see if they are prime.

i. Remember that something isn’t a prime number if

another integer can divide it…use your % operator.

ii. Think about how many numbers you actually need to

check….you can stop sooner than you think!

c. You’ll need two loops

d. If you want to check that your code is correctly finding primes,

you can find a list of primes at

http://primes.utm.edu/lists/small/1000.txt

