Computer Science 3-4
Problem Set #8: Intro to Arrays

An array is a powerfubata structure in C++ that lets us keep track of lists of diffierre
types of information. They are quite flexible it we can put almost anything we want
into an array and then access it at a later tiAreays have two main requirements when
we define them: first of all we must give thenypd...int, float, string, char, etc.
Second of all we need to specify the length ofaitray. Here are a few examples:

int scores[10];
char word[Z];
float list[&0];

int even=[4] = {2,4,6,8};
array to hold these 4 elements.
char letters[3] = {‘a’,'b’,'c'};
evens[0] = 10;
letter=[2] = *df

We call the number inside the bracketsititex of the array.

Some Important Considerations
1. The firstitem in the array is always stored aex@. This isvery, very, very
important. So the 2 item in the array is actually at index 1, ti&a index 2,
etc.
2. You cannotdirectly copy an array, even if they are the saime for example you
cannot write:
Evens[] = otherEvens]]
To accomplish this you actually need to u$erdoop to carefully copy each
element over one by one. Here’s an example oflwewan set all of the elements of an
array equal to O using a for loop:

for(int 1 0; 1<10; 1i++)

nf[i] = 0;

This is the fundamental process we are going tedr&ing with when we work with
arrays....we will have some sortfof loop that we will use to access or fill up theagtr
This loop prints out everything in an array:
for({ int 1 = 0; 1<10; 1++)
cout << "Element "<< 1 << " Has Value: " << n[i];

Here is the standard input loop for arrays:

for(int 1 = 0; 1<10; 1++)

{
cout << "Please Enter a Number: E
cin >> n[i];

We can do all of the same arithmetic we can do withmal numbers using arrays
(provided the information stored in the array isially a double or int). Remember that
we start indexing from 0! For instance, if we hhd two following arrays:

o

Then:

sum = odd[1l] + ewven[3];
product = odd[Z2] * even[0];
odd[4] odd[0];

numbe even[l+2];

We will be doing a lot with arrays moving forward ere are a few problems to help you
get comfortable!

1. Grades Revisited -Ask the user how many grades they'd like to erdtame
them in an array, calculate the mean and then puna list of the grades that are
below the mean.

2. Roll the Dice— We often want to keep track of the frequencfezomething
occurring. If we set up our array properly, we cae it to keep track of quite a
few things we might use counters for in the pdshk of it as an array of
counters almost...you don’t care about the orderhiciwthe rolls occur). For
this problem, write a program that asks the user imany times they would like
to roll a 6-sided die and then keep track of homynaf each roll occurred. Print
the results to the screen.

3. Queen’s Choice -Suppose that we want to place eight queens omdast 8 x 8
chessboard so that we have exactly one queenimnreac Write a program that
lets the user input which column the queen is @&t each row and then prints
out a visual of the board. For example if the «seers: 6,3,4,0,2,7,6,7 we get:

******Q*
Q*
****Q***
Q*******
Q***
*******Q
******Q*

*******Q

4. Histogram —Modify Problem #1 so that after the user has edtareheir
numbers, the program prints out a histogram (baplgrof how many values fell
between a certain range (i.e. 0 — 9, 10 — 19,.eklteye is an example of what it
should look like (Hint: you can be clever with %r& and avoid a bunch of if
statements):

e C:AWINDOWS\system32\cmd. exe

Grade distribution:

Prezs any key to continue . . .

5. Making a List...Checking it Twice —Write a program that generates 20 random
integers between 1 and 20 and:
a. Prints it to the screen
b. Prints the same list to the screen, but skips amyler that has already
been printed to the screen (i.e. no number shqapea more than once).

6. A Unique List — Your task is to fill up an array with 20 randamegers (from 1
to 100), however there can be no repeats withirk€hendom numberd\ote:
this is slightly different than the above problerese you have 20 numbers but
might only print out 12 of them!

