
Computer Science 3-4
Problem Set #8: Intro to Arrays

An array is a powerful data structure in C++ that lets us keep track of lists of different
types of information. They are quite flexible in that we can put almost anything we want
into an array and then access it at a later time. Arrays have two main requirements when
we define them: first of all we must give them a type…int, float, string, char, etc.
Second of all we need to specify the length of the array. Here are a few examples:

We call the number inside the brackets the index of the array.

Some Important Considerations:

1. The first item in the array is always stored at index 0. This is very, very, very
important . So the 2nd item in the array is actually at index 1, the 3rd at index 2,
etc.

2. You cannot directly copy an array, even if they are the same size for example you
cannot write:

Evens[] = otherEvens[]
 To accomplish this you actually need to use a for loop to carefully copy each
element over one by one. Here’s an example of how we can set all of the elements of an
array equal to 0 using a for loop:

This is the fundamental process we are going to be working with when we work with
arrays….we will have some sort of for loop that we will use to access or fill up the array.
This loop prints out everything in an array:

Here is the standard input loop for arrays:

We can do all of the same arithmetic we can do with normal numbers using arrays
(provided the information stored in the array is actually a double or int). Remember that
we start indexing from 0! For instance, if we had the two following arrays:

We will be doing a lot with arrays moving forward…here are a few problems to help you
get comfortable!

1. Grades Revisited – Ask the user how many grades they’d like to enter, store
them in an array, calculate the mean and then print out a list of the grades that are
below the mean.

2. Roll the Dice – We often want to keep track of the frequencies of something

occurring. If we set up our array properly, we can use it to keep track of quite a
few things we might use counters for in the past (think of it as an array of
counters almost…you don’t care about the order in which the rolls occur). For
this problem, write a program that asks the user how many times they would like
to roll a 6-sided die and then keep track of how many of each roll occurred. Print
the results to the screen.

3. Queen’s Choice – Suppose that we want to place eight queens on a standard 8 x 8
chessboard so that we have exactly one queen in each row. Write a program that
lets the user input which column the queen is located in each row and then prints
out a visual of the board. For example if the user enters: 6,3,4,0,2,7,6,7 we get:

******Q*
Q*
****Q***
Q*******
Q***
*******Q
******Q*
*******Q

4. Histogram – Modify Problem #1 so that after the user has entered in their
numbers, the program prints out a histogram (bar graph) of how many values fell
between a certain range (i.e. 0 – 9, 10 – 19, etc.). Here is an example of what it
should look like (Hint: you can be clever with % here and avoid a bunch of if
statements):

5. Making a List…Checking it Twice – Write a program that generates 20 random

integers between 1 and 20 and:
a. Prints it to the screen
b. Prints the same list to the screen, but skips any number that has already

been printed to the screen (i.e. no number should appear more than once).

6. A Unique List – Your task is to fill up an array with 20 random integers (from 1
to 100), however there can be no repeats within the 20 random numbers. Note:
this is slightly different than the above problem where you have 20 numbers but
might only print out 12 of them!

