## Chapter 7 Gluten

How Baking Works

### Words, Phrases, and Concepts

- Glutenin
- Gliadin
- Tenacity
- Elasticity
- Extensibility
- Windowpane
- Bucky dough
- Slack dough
- Mechanical dough development

- Chemical dough
  development
- Water hardness
- pH
- Letdown stage
- Reducing agent
- Glutathione
- Protease
- Dough relaxation

## Introduction

- Gluten:
  - One of three main structure builders in baked goods.
    - Egg proteins and starch are other two.
    - Especially important with yeast doughs.
  - Affected by formula and method of preparation.

Gluten:

- Is a large, complex protein.
  - Made up of glutenin and gliadin, two proteins in flour.
- Forms a strong, stretchy network when flour is mixed with water.
  - Glutenin: provides strength and elasticity.
    - Strength is also called tenacity; a measure of how much force is needed to stretch dough.
    - Elasticity refers to the ability to bounce back once dough is stretched.
  - Gliadin: provides extensibility, or stretchiness.

Yeast doughs need a balance of glutenin and gliadin:

-Need a balance of strength and stretchiness.





Gluten:

- Changes as it is handled.
- Dough becomes smoother, stronger, drier, and less lumpy as gluten develops.



When yeast dough reaches a balance of strength and stretchiness:

- Has reached dough maturity.
- Can be stretched into a paper-thin sheet of dough known as a windowpane.



### Determining Gluten Requirements

Baked goods vary in their need for gluten.

- Yeast doughs need gluten for fermentation tolerance:
  - For the ability of dough to hold in gases generated from yeast fermentation.
  - Important throughout proofing and oven spring.
    - Provides for large loaf volume and fine crumb.
    - Ciabatta dough requires less gluten than sandwich bread (pain de mie).



### **Determining Gluten Requirements**

Baked goods vary in their need for gluten.

- Cakes and most other pastries need less gluten than yeast doughs.
  - Many rely more on other structure builders (eggs and starch).
  - However, gluten often needed to prevent crumbling, collapsing, or slumping.
    - Examples: pie crust, baking powder biscuits.

- Three ways that gluten develops and matures in yeast dough:
  - Mechanical dough development: mixing.
  - Chemical dough development: addition of maturing agents that strengthen.
  - Bulk fermentation and proofing.
    - Complex; many changes besides gluten development occur simultaneously.
- Each acts differently, but all encourage gluten development.

#### Gluten development:

Results from the alignment and bonding of glutenin into a large, cohesive gluten network.







- Many ways to control gluten development:
  - Know how to increase gluten so that:
    - Dough is stronger and more elastic, or
    - Baked good is firmer and holds it shape.
  - Know how to decrease gluten so that:
    - Dough is softer, slacker, and more extensible, or
    - Baked good is more tender.
- Not all techniques work in all products: *Examples*: dough conditioners, heat-treated milk.

#### 1.Type of flour

- Type of grain.
  - Wheat, rye, oat, corn, etc.
    - Wheat is only grain with significant glutenin and gliadin.
- Varieties of wheat.
  - Soft, hard, durum.
- White vs. whole wheat.

#### 2.Amount of water

When gluten is not fully hydrated, additional water <u>increases</u> gluten development.

Examples: pie and biscuit doughs.

 When gluten is fully hydrated, additional water dilutes and <u>decreases</u> gluten development.

Examples: cake batter, well-hydrated bread dough.



3.Water hardness

- Measure of mineral content: calcium and magnesium.
  - Hard water is high in minerals; produces strong, bucky dough.
  - Soft water is low in minerals; produces soft, slack extensible dough.
- In yeast doughs, usually best to have water that is neither too hard nor too soft, so that strength and extensibility are in balance.

Water hardness varies across the country.



#### 4.Water pH

- Measure of acidity or alkalinity.
- For maximum gluten:
  pH = 5-6 (slightly acidic).
- Adding acid lowers pH.
  - *Example*: Vinegar makes strudel dough softer, more extensible.
- Adding alkali (base) raises pH.

*Example*: Baking soda makes cookies thinner, more open, more tender.



#### 5. Mixing and kneading

- The more mixing, the more gluten development up to a point.
- Mixing increases gluten development as it:
  - Speeds up hydration of flour particles.
  - Adds oxygen from air into dough.
  - Distributes particles evenly throughout dough.



5. Mixing and kneading (cont.)

- Lengthy or vigorous mixing breaks down gluten structure.
  - Letdown stage of mixing yeast doughs.
  - Dough becomes soft, sticky, easily torn.
  - The weaker the gluten, the more easily it overmixes. *Examples*: rye dough; rich, sweet yeast doughs.



6.Batter/dough temperature

- Warmer the temperature, the faster gluten develops.
  - Not a common means of controlling gluten development.

Examples: yeast-raised dough; pie pastry dough

7. Maturing agents and dough conditioners

- Maturing agent that weakens gluten: chlorine.
- Maturing agent that strengthens: ascorbic acid.
- Dough conditioners:
  - Multifunctional ingredients.
  - Primarily, they strengthen gluten.

8.Fermentation and proofing

- Expanding air bubbles push on gluten, strengthening it.
- Additional fermentation and proofing can weaken gluten.
  - Dough becomes softer and more extensible.
- Overall, complex effect on gluten: many chemical and physical changes happening.

- 9.Reducing agents
  - Opposite of maturing agents that strengthen.
  - Weaken gluten; doughs become softer, more extensible.
  - Example: glutathione
    - Found in: fluid milk, active dry yeast, wheat germ.

#### 10.Enzyme activity

- Proteases are enzymes that break down proteins, including gluten.
- Weakens gluten; dough becomes softer, more extensible.

### Controlling Gluten Development 10.Enzyme activity (conť)

### **TABLE 7.1**SOURCES OF PROTEASEACTIVITY IN BREAD BAKING

| Malted flours, including malted barley flour (dry malt) |
|---------------------------------------------------------|
| Sprouted wheat berries                                  |
| Soakers                                                 |
| Whole wheat flour                                       |
| Rye flour                                               |
| Autolysed doughs                                        |
| Liquid levains (sourdoughs)                             |
| Poolish and other pre-ferments                          |

- 11.Tenderizers and softeners
  - Interfere with or limit gluten development.
  - Examples:
    - Fats, oils, and emulsifiers.
      - Shortening is named for the ability of fats to "shorten" gluten strands.
    - Sugars.
    - Leavening gases.
      - Gluten strands stretch thin as leavening gases expand, weakening cell walls.

#### 12.Salt

- Strengthens gluten and makes it less sticky.
  - Prevents excessive tearing as gluten stretches.
  - Salt is sometimes added late in the mixing of yeast doughs.
    - Reduces frictional heat from mixing.

#### 13.Other structure builders

 Interfere with gluten development, even as they contribute their own structure.

*Example:* starches, especially if ungelatinized; eggs in rich sweet yeast doughs.

#### 14.Milk

- Fluid milk:
  - Source of water; increases gluten development.
  - Contains glutathione; reduces gluten during fermentation and proofing.
    - Dough becomes softer, more extensible.
    - Scalding milk first inactivates glutathione.
- Dry milk solids (DMS):
  - Low-heat DMS: contains glutathione; weakens gluten.
  - High-heat DMA: contains no glutathione; does not weaken gluten.

- 15.Fiber, bran, grain particles, fruit pieces, spices, etc.
  - Weaken gluten by shortening gluten strands.
    - Particles physically interfere with gluten strands from forming.

Dough relaxation

- Dough resting period.
  - Bench rest for yeast doughs.
  - Refrigeration of laminated doughs between folds.
     Refrigeration also solidifies fat, for more flakiness.
- Makes it easier to shape, roll and fold dough properly.
  - Dough is less elastic and more extensible.
- Dough shrinks less during baking.