

Airflow Testing Report

Prepared for

Portland Public Schools

August 2021

9700 SW Capitol Hwy, Suite 110 Portland, OR 97219 ameresco.com

PROJECT OVERVIEW

As part of the continuing process to ensure a safe return to in-person learning, Portland Public Schools has contracted with Ameresco to test the airflow and ventilation of all educational and office spaces in each school. The data is reviewed by both Ameresco and PPS personnel to identify any potential shortcomings in the airflow from the HVAC systems. To accomplish this task, Ameresco has partnered with a local NEBB certified Test-Adjust-Balance (TAB) firm, Neudorfer Engineers, who will measure the airflow to each zone with calibrated measurement equipment in accordance with current testing standards and procedures. As part of this effort, HVAC professionals will review the operation of the HVAC equipment serving every educational and office space in each school.

Ameresco is pleased to have partnered with PPS over the last decade as the district's Energy Services Company (ESCO) on six energy efficiency construction projects, four service projects, and numerous energy audits. Our partnership has resulted in reducing over 3,000 tons of CO₂ and other GHG emissions and over \$1,000,000 in utility cost savings per year. Ameresco appreciates this opportunity to play a small role in the safe reopening of schools.

About Ameresco, Inc.

Founded in 2000, Ameresco, Inc. (NYSE:AMRC) is a leading cleantech integrator and renewable energy asset developer, owner and operator. Our comprehensive portfolio includes energy efficiency, infrastructure upgrades, asset sustainability and renewable energy solutions delivered to clients throughout North America and the United Kingdom. Ameresco's sustainability services in support of clients' pursuit of Net Zero include upgrades to a facility's energy infrastructure and the development, construction, and operation of distributed energy resources. Ameresco has successfully completed energy saving, environmentally responsible projects with Federal, state and local governments, healthcare and educational institutions, housing authorities, and commercial and industrial customers. With its corporate headquarters in Framingham, MA, Ameresco has more than 1,000 employees providing local expertise in the United States, Canada, and the United Kingdom. For more information, visit <u>www.ameresco.com</u>.

Explanation of ASHRAE Total Effective Air Changes per Hour (ACH_e) Calculation

ASHRAE has been updating their Building Readiness document to reflect the most current understanding in the engineering community for how to operate and maintain buildings during the pandemic. Their update on 4/27/2021 provided an explanation of the impact air filters and air cleaning devices have on the air in buildings. They provided the methodology, formulas, and an Excel-based tool for determining the equivalent outside air a space is receiving by having a mix of outside air, filtered recirculated air, and additional air filtration or cleaning devices in the room. Here is the explanation from ASHRAE:

Epidemic Conditions in Place

Equivalent Outdoor Air:

The equivalent outdoor air calculation indicates that the outdoor air can be calculated by using the combination of the actual outdoor air, impact of filtration or air cleaning technologies on recirculated air, and the impact of air cleaning technologies in the space.

This is using the principal of filters in series and the effectiveness at reducing particles. For items in series, the initial item would see the recirculated airflow to clean. The second item in the series would see the "cleaned" air from Item 1 and so the impact of Item 1 must be accounted for in Item 2.

As part of the airflow testing project that Portland Public Schools has partnered with Ameresco to complete, we are including the calculation of the Total Effective Air Changes per Hour (ACH_e) to show the impact of the air filtration that is active in nearly all spaces in the PPS schools. The formula for doing so is:

$$ACH_e = (ACH_{oa} + ACH_f) * E_Z + ACH_ir$$

where:

- ACH_{oa} = air changes per hour of outside air = outside airflow in cubic feet per minute * 60 minutes per hour / room volume in cubic feet
- ACH_f = air changes per hour of clean air from filtered recirculated air with filters of the specified MERV rating as determined by ASHRAE
- E_z = Zone Air Distribution Effectiveness = how effective the HVAC system is at circulating and mixing the air to distribute the clean air throughout the room
- ACH_ir = the air changes per hour of clean air from portable air filters in the room = number of filters * CADR * 60 minutes per hour / room volume in cubic feet
 - CADR = Clear Air Delivery Rate = the CFM of clean air as specified by the manufacturer of the air filter

In order to include these calculations in the airflow testing reports, Ameresco and PPS have made the following assumptions as not all the variables are known:

- 1. PPS is in process of upgrading the air filters in their HVAC systems to MERV 13 and plans to be complete with that project for the start of the '21-'22 school year. In this report and for the sake of the ACH_e calculation, we are using the filters that are in place at the time of the measurements, so some of them are still MERV 8.
- ASHRAE has guidelines for what should be used for the Zone Air Distribution Effectiveness (E_z) based on the HVAC system configuration, but they do not provide a value for every HVAC system and room configuration. For the majority of PPS rooms, an E_z of 0.8 – 1.0 would be most appropriate, so we have made the conservative assumption of using 0.8 for every space as that yields the lower ACH_e.
- 3. The CADR for a given air filter is from manufacturer ratings and is based on certain conditions (fan speed, particulate size, filter cleanliness, etc.) that change with operating conditions.

TEST REPORT TYPE: SURVEY REPORT

Portland Public Schools Airflow Testing Alameda ES 2732 NE Fremont St, Portland, OR 97212

Job Number: 2021-0297

Project Completion Date: September 2021 **Revision Date:** -**Revision Number:**

Neudorfer Engineers, Inc. Consulting Engineers Seattle, Washington - Portland, Oregon

Portland Public Schools Airflow Testing Alameda ES

TABLE OF CONTENTS

Title Sheet	3
Report Certification	4
Terms	5
Instrument Calibration	6
Report Summary	7
Airflow Survey Report	8
TAB Notes	11
Floor Layout	12

REPORT TITLE

CERTIFIED TEST: SURVEY REPORT

Project: Portland Public Schools Airflow Testing Alameda ES

NEI Job#: 2021-0297

Mechanical Engineer: NA

Architect: NA

HVAC Contractor: NA

TAB Firm:Neudorfer Engineers Inc**Test Engineer:**Kevin Ellinghausen

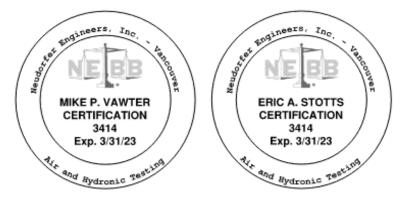
Neudorfer Engineers, Inc.

Consulting Engineers Seattle, Washington - Portland, Oregon

CERTIFICATION

Portland Public Schools Airflow Testing

The data presented in this report is a record of system measurements and final adjustments that have been obtained in accordance with the current edition of the NEBB Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems. Any variances from design quantities, which exceed NEBB tolerances, are noted in the Test-Adjust-Balance Report Project Summary.


Significant / Noteworthy Remarks are noted on the General Remarks and General Field Notes pages. Other remarks are noted on individual test sheets.

Noted deficiencies are not the TAB firms responsibility to repair. Prior to issuance of this report, Deficiency Reports are forwarded to our contracted agent.

Warranty is limited to one year from date of this report. Within that time, any discrepancies, ambiguities, or omissions found in this report will be retested, adjusted, or balanced as needed. A written notification will be required.

Submitted and Certified by:

NEBB TAB Firm:	Neudorfer Engineers Inc
Certification No:	3414
Expiration Date:	March 31, 2023
Certification Date:	March 31, 2021
(Date completed)	Signed and Sealed by:
NEBB Supervisor:	Mike Vawter P.E.
NEBB Supervisor:	Eric Stotts
Certification Date: (Date completed) NEBB Supervisor:	March 31, 2021 Signed and Sealed by: Mike Vawter P.E.

Neudorfer Engineers, Inc. Consulting Engineers Seattle, Washington - Portland, Oregon

TERMS AND ABBREVIATIONS

AC or ACU	Air Conditioner or Air Conditioning Unit	HEPA	High Efficiency Particulate Arresta
	Air Handler or Air Handling Unit		Horsepower
	Average		Heating Ventilation and Air Conditi
	Brake Horsepower		Heating Water Supply
	Constant Air Volume		Heating Water Return
CBV	Calbirated Balancing Valve		Heat Exchanger
	(Circuit Setter)		Hertz, cycle per second
	Cooling Coil		inches
	Ceiling Diffuser	in.w.g.	inches of water gauge
	Cubic Feet per Minute	•	Correction factor to the free area n
	Chiller		calculate CFM.
CHWS	Chilled Water Supply	KW	Kilowatts
CHWR	Chilled Water Return	LAT	Leaving Air Temperature
СР	Circulating Pump		Low Wall Grille
	Ceiling Register		Low Wall Register
	Computer Room Air Conditioner		Leaving Water Temperature
	Computer Room Unit		Make-up Air Hangling Unit
	Cooling Tower		1,000 BTUH
	Condenser Unit		Not Applicable
-	Cabinet Unit Heater		Outside Air
CWS	Condenser Water Supply	OBD	Opposed Blade Damper
	Condenser Water Return		Pressure Drop.
	Discharge Air Temperature		Phase
	Dyr Bulb	PSI	Pounds per Square Inch
	Direct Drive		Return Air
DDC	Direct Digital Controls: EMS Control	RAD	Radiator
	System for the HVAC	RAT	Return Air Temperature
Des.	Design		Return Fan
Dia.	Diameter		Relative Humidity
Disch.	Discharge		Reheat Coil
EA	Exhaust Air	RPM	Revolutions per Minute
EAT	Entering Air Temperature	RTU	Roof Top Unit
Economizer	Controls and components that allow an		Supply Air
	air handler to logically utilize outdoor air	SAT	Supply Air Temerature
	for cooling as opposed to the use of	S.F.	Service Factor
	mechanical cooling.	SF	Supply Fan
EF	Exhaust Fan	SFD	Smoke/Fire Damper
EG	Exhaust Grille	SP	Static Pressure
EMCS	Energy Management Control System	sq.ft.	square feet
ERU	Energy Recovery Unit	Suct.	Suction
E.S.P.	External Static Pressure	SWG	Sidewall Grille
	Heat Recovery Coil	SWR	Sidewall Register
EWT	Entering Water Temperature	TAB	Test; Adjust; and Balance
FCU	Fan Coil Unit	TSP	Total Static Pressure: Difference
	Fire Damper		between the entering and leaving
FLA	Full Load Amperage: Maximum		static pressure of a fan.
	amperage a motor can draw.	UH	Unit Heater
Flow Hood	Instrument that captures air and	VAV	Variable Air Volume; box that
	converts the reading to CFM.		contains a motorized damper that
FHT	Fume Hood Test		modulates airflow.
FPB	Fan Powered Box		Volume Damper
FPM	Feet per Minute	VFD	Variable Frequency Drive
FR	Field Report	Velgrid	Instrument that reads used to read
FT	Foot, Feet		velocity in feet per minute.
FTU	Fan Terminal Unit	VVT	Variable Volume Terminal
	College new Minute	WC	Water Column
	Gallons per Minute		-
GPM	Heating Coil		Water Gauge

INSTRUMENT CALIBRATIONS Portland Public Schools Airflow Testing

Instrument Type	Air Data Meter with Flowhood	Instrument Serial #	M00475
Instrument Manufacturer	Shortridge	Calibration Date	11/4/2020
Instrument Model Number	ADM 870	Calibration Due	11/4/2021
Instrument Type	Differential Pressure Water Meter	Instrument Serial #	W14090
Instrument Manufacturer	Shortridge	Calibration Date	10/16/2020
Instrument Model Number	HDM-250	Calibration Due	10/16/2021
Instrument Type	Psychrometer	Instrument Serial #	8084305
Instrument Manufacturer	Extech	Calibration Date	10/13/2020
Instrument Model Number	RH390	Calibration Due	10/13/2021
Instrument Type	Tachometer	Instrument Serial #	B185B5022P
Instrument Manufacturer	Nidec	Calibration Date	10/11/2020
Instrument Model Number	MT-200	Calibration Due	10/11/2021
Instrument Type	Amp Probe	Instrument Serial #	33380179WS
Instrument Manufacturer	Fluke	Calibration Date	10/9/2020
Instrument Model Number	323 Clamp Meter	Calibration Due	10/9/2021
Instrument Type	Digital Thermometer	Instrument Serial #	45400509WS
Instrument Manufacturer	Fluke	Calibration Date	10/9/2020
Instrument Model Number	52 II	Calibration Due	10/9/2021
Instrument Type	Manometer	Instrument Serial #	M00475
Instrument Manufacturer	Shortridge	Calibration Date	11/4/2020
Instrument Model Number	ADM 870	Calibration Due	11/4/2021
Instrument Type	Thermal Anemometer	Instrument Serial #	AVM440742003
Instrument Manufacturer	Alnor Instruments	Calibration Date	11/9/2020
Instrument Model Number	AVM 440	Calibration Due	11/9/2021
Instrument Type	Ultrasonic Flow Meter	Instrument Serial #	N5K1435T
Instrument Manufacturer	Fuji	Calibration Date	10/14/2020
Instrument Model Number	Portaflow-C	Calibration Due	10/14/2021

Consulting Engineers Seattle Portland

Neudorfer Engineers, Inc.

PROJECTPortland Public Schools Airflow TestingLOCATIONAlameda ES; 2732 NE Fremont St, Portland, OR 97212

REPORT SUMMARY

This project has been surveyed per plans and specifications using the National Environmental Balancing Bureau (NEBB) standards and procedures.

The scope of work for this project was to assess the current airflows for each classroom, office, and special purpose space. Air changes per hour were calculated along with the % of OSA for the spaces and any deficiencies found for each piece of equipment has been noted in the following report.

All ventilation equipment was commanded to run by the BMS system. Ventilation units were measured with a flowhood on the supply outlets. Outside air was recorded with a flowhood on the OSA louvre where accessible. AK factors were calculated from flowhood readings. The remaining OSA values were recorded with a velgrid. AHU supply air was recorded by a summation of the outlets as recorded by flowhood or velgrid when appropriate. Outside air was recorded with a velgrid or airfoil and calculated by the free area method.

The measured airflows in this report represent the performance of the equipment at the time of measurement, which vary over time based on operating conditions. There are factors outside the control of Neudorfer that impact airflow, and variance in those factors is expected and normal. One significant factor is the MERV rating and condition of the air filters on the equipment. During the summer of 2021, PPS began upgrading the filters on all their fan systems to MERV 13. Those upgraded filters are more effective at capturing particles but also impact the amount of airflow from the equipment. These filter changes were occurring while the airflow measurement project was happening, so some schools had the new filters, and some had the old filters at the time of measurement. On the data page included this report, there is a line stating whether or not the upgraded filters were in place at the time of measurement.

Neudorfer Engineers. Inc. Consulting Engineers Seattle Portland

AIRFLOW SURVEY REPORT

Project:	Portland Public Schools Airflow Testing
Location:	Alameda ES; 2732 NE Fremont St, Portland, OR 97212
Filter Status:	Not Upgraded

	Equipm	ent Info		Roo	m Dimens	ions		Airflov	v Measurem	nents			Calculate			
Room	Served By	Equipment Type	Room Length	Room Width	Room Area	Room Height	Room Volume	Total CFM Supply	OA CFM Supply	OA %	Air Changes per Hour (supply)	Air Changes per Hour (OA)	# of Portable Filters	Total Effective Air Changes per Hour (ACH_e) with Portable Filter	Total Effective Air Changes per Hour (ACH_e) without Portable Filter	Notes
Lower Level																
Rm B43	UV	UV	29.2	27.7	808	8.8	7,134	570	115	20%	4.8	1.0	1	4.7	2.5	
Rm B44	UV	UV	29.2	27.5	803	8.8	7,090	640	145	23%	5.4	1.2	1	5.0	2.8	
Rm B46	UV	UV	29.0	27.5	798	8.8	7,042	615	300	49%	5.2	2.6	1	5.5	3.2	
Rm 200	-	-	-	-	-	-	-	-	-	-	0.0	0.0	0	N/A	0.0	Area is open air space linked to playground
First Floor																
Rm 100	Fan Unit	Fan Unit	30.5	27.5	839	11.0	9,226	210	210	100%	1.4	1.4	1	2.8	1.1	
Rm 101	Fan Unit	Fan Unit	30.5	27.5	839	11.0	9,226	210	210	100%	1.4	1.4	1	2.8	1.1	
Rm 102	Fan Unit	Fan Unit	30.5	27.5	839	11.0	9,226	210	210	100%	1.4	1.4	1	2.8	1.1	
Rm 103	Fan Unit	Fan Unit	30.4	27.5	837	11.0	9,202	200	200	100%	1.3	1.3	1	2.7	1.0	
Rm 104	UV x2	UV x2	38.9	22.7	882	11.7	10,297	905	360	40%	5.3	2.1	1	4.6	3.1	
Rm 105	UV	UV	32.7	28.5	1,003	11.7	11,709	870	430	49%	4.5	2.2	1	4.1	2.8	
Rm 106	UV	UV	32.0	24.0	768	11.7	8,963	685	285	42%	4.6	1.9	1	4.5	2.7	
Rm 107	UV	UV	37.8	27.0	1,019	11.7	11,895	135	0	0%	0.7	0.0	1	1.6	0.3	
Rm 108	UV	UV	31.7	22.9	726	11.7	8,471	850	290	34%	6.0	2.1	1	5.2	3.4	
Rm 110	UV	UV	31.4	22.9	720	11.7	8,404	540	120	22%	3.9	0.9	1	3.9	2.0	
Rm 111	UV	UV	30.0	27.3	820	11.7	9,568	500	135	27%	3.1	0.8	1	3.3	1.7	
Rm 115	UV	UV	30.0	29.5	885	10.0	8,850	100	0	0%	0.7	0.0	1	2.1	0.3	UV was running in heating mode when measuring
Rm 116	UV x4	UV x4	127.3	22.9	2,905	11.7	33,897	1,810	620	34%	3.2	1.1	1	2.3	1.8	
Rm 134	UV	UV	31.8	22.9	728	11.7	8,492	486	82	17%	3.4	0.6	1	3.6	1.7	
Rm 136	UV	UV	32.1	22.9	735	11.7	8,581	1,080	95	9%	7.6	0.7	1	5.4	3.6	UV was running in heating mode when measuring
Rm 138	UV	UV	32.1	22.9	735	11.7	8,581	1,115	40	4%	7.8	0.3	1	5.4	3.6	UV was running in heating mode when measuring
Rm 139	UV	UV	40.6	30.8	1,153	11.7	13,456	910	225	25%	4.1	1.0	1	3.3	2.2	
Rm 140	UV	UV	31.3	24.0	750	11.7	8,753	755	400	53%	5.2	2.7	1	5.1	3.3	
Rm 140B	UV	UV	38.7	22.9	886	11.7	10,343	630	395	63%	3.7	2.3	1	3.9	2.4	

Date: 4/20/2021

Readings By: Kevin E

Neudorfer Engineers. Inc. Consulting Engineers Seattle Portland

AIRFLOW SURVEY REPORT

Project:	Portland Public Schools Airflow Testing
Location:	Alameda ES; 2732 NE Fremont St, Portland, OR 97212
Filter Status:	Not Upgraded

	Equipm	uipment Info Room Dimensions							v Measurem	nents			Calculate			
Room	Served By	Equipment Type	Room Length	Room Width	Room Area	Room Height	Room Volume	Total CFM Supply	OA CFM Supply	OA %	Air Changes per Hour (supply)	Air Changes per Hour (OA)	# of Portable Filters		Total Effective Air Changes per Hour (ACH_e) without Portable Filter	Notes
First Floor																
Rm 141	UV	UV	29.3	27.8	816	9.0	7,346	605	335	55%	4.9	2.7	1	5.3	3.2	
Rm 142	UV	UV	29.3	27.8	816	9.0	7,346	50	35	70%	0.4	0.3	1	2.4	0.3	Note #1
Rm 143	UV	UV	29.2	27.8	812	9.0	7,306	695	0	0%	5.7	0.0	1	4.7	2.5	Note #2
Rm 144	UV	UV	29.2	27.7	807	9.0	7,264	545	270	50%	4.5	2.2	1	4.9	2.8	
Rm 148	UV	UV	29.2	27.7	807	9.0	7,264	670	395	59%	5.5	3.3	1	5.8	3.6	
Rm P1	UV	UV	32.2	22.2	713	11.5	8,202	750	395	53%	5.5	2.9	1	5.4	3.5	
Rm P2	UV	UV	54.3	23.3	1,266	11.5	14,555	1,245	625	50%	5.1	2.6	1	4.3	3.2	
Office 105B	-	-	13.4	10.4	140	11.7	1,631	-	-	-	0.0	0.0	1	9.6	0.0	Ventilation served from adjacent corridor
Office 113	-	-	21.7	8.5	184	8.3	1,534	-	-	-	0.0	0.0	1	10.2	0.0	No forced air in space, only natural ventilation.
Office 123	Exhaust Fan	Exhaust Fan	14.8	10.3	151	11.9	1,802	-65	0	0%	2.2	0.0	1	9.6	1.0	No supply air to space, only exhaust air.
Office 127	Exhaust Fan	Exhaust Fan	10.8	10.3	112	12.0	1,347	-165	0	0%	7.3	0.0	1	14.8	3.3	No supply air to space, only exhaust air.
Conf Rm 122	FCU-01	FCU	19.9	14.8	294	11.8	3,452	224	29	13%	3.9	0.5	1	6.4	1.9	
Office 122A	FCU-01	FCU	14.8	8.3	124	8.9	1,102	179	23	13%	9.7	1.3	1	18.9	4.8	
Office 130A	FCU-01	FCU	12.4	8.3	103	9.0	931	212	28	13%	13.7	1.8	1	23.5	6.7	
Conf Rm 130B	FCU-01	FCU	14.1	12.4	175	11.7	2,041	169	22	13%	5.0	0.6	1	10.1	2.4	
Conf Rm 130C	FCU-01	FCU	12.4	9.8	121	11.7	1,412	280	36	13%	11.9	1.5	1	16.9	5.8	
Conf Rm 130D	FCU-01	FCU	16.6	9.8	162	11.7	1,887	320	42	13%	10.2	1.3	1	13.3	5.0	
Office 206	Exhaust Fan	Exhaust Fan	11.3	10.0	89	7.1	631	-25	0	0%	2.4	0.0	1	25.8	1.1	Room ventilation from exhaust inlet
Auditorium 10	AHU-01	AHU	73.3	49.0	3,593	21.8	78,151	5,080	5,080	100%	3.3	3.3	1	2.9	2.7	
Stage 125A	-	-	49.0	13.7	670	19.2	12,841	-	-	-	5.5	5.5	1	2.9	2.7	Stage air ventilation shared with Auditorium
Gym 137	AHU-01	AHU	66.3	39.2	2,598	22.0	57,159	640	640	100%	0.7	0.7	1	0.8	0.5	
119	-	-	21.0	20.8	437	12.0	5,249	-	-	-	0.0	0.0	1	3.0	0.0	Ventilation served from adjacent corridor
H1	-	-	10.3	7.0	72	8.0	574	-	-	-	0.0	0.0	0	N/A	0.0	No forced air in space, only natural ventilation.
129	-	-	20.9	31.2	587	9.8	5,766	-	-	-	0.0	0.0	0	N/A	0.0	No forced air in space, only natural ventilation.

Date: 4/20/2021

Readings By: Kevin E.

Neudorfer Engineers. Inc. Consulting Engineers Seattle Portland

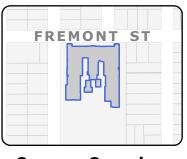
AIRFLOW SURVEY REPORT

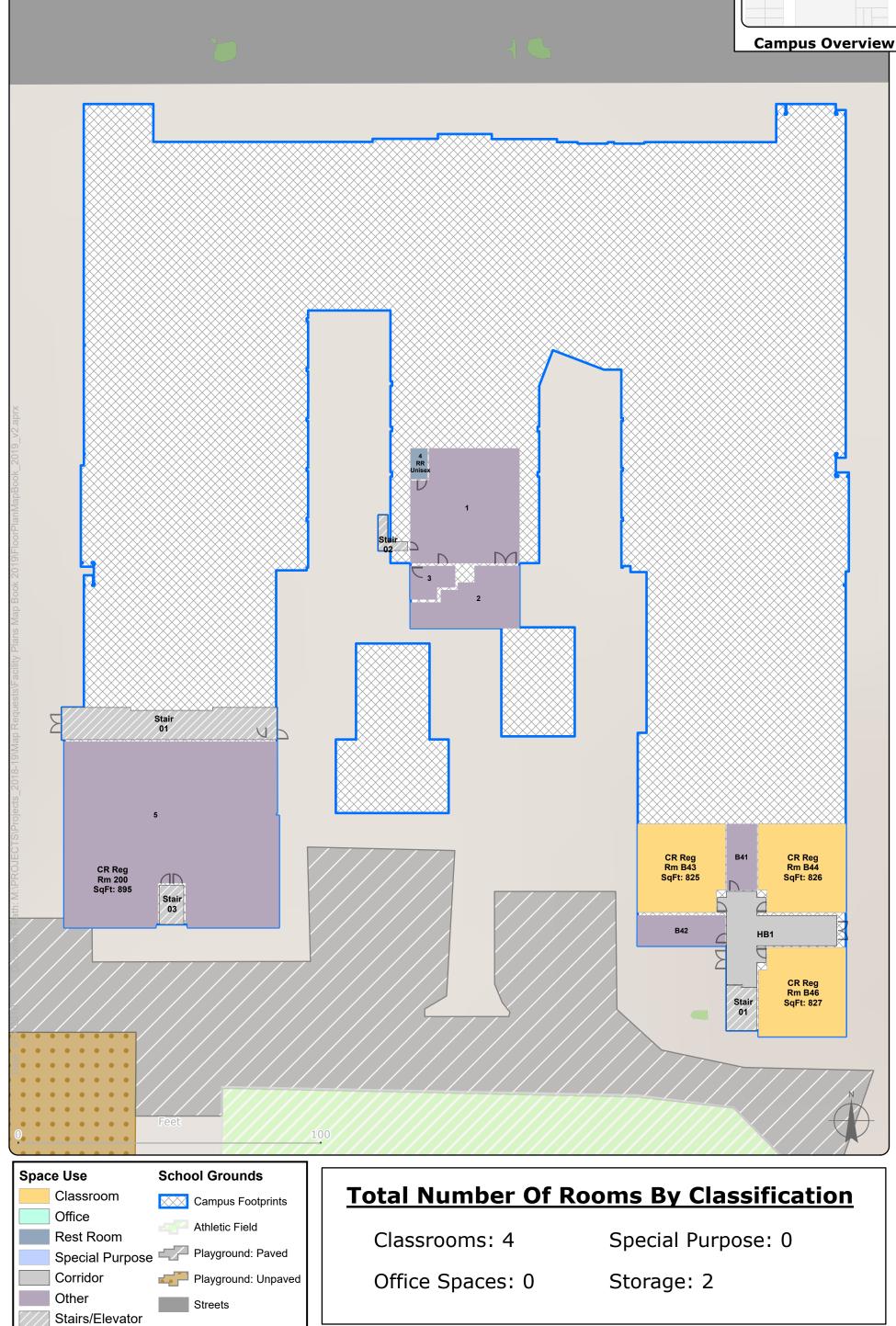
Project:	Portland Public Schools Airflow Testing
Location:	Alameda ES; 2732 NE Fremont St, Portland, OR 97212
Filter Status:	Not Upgraded

	Equipm	ent Info		Roo	om Dimensi	ions		Airflov	v Measuren	nents			Calculate			
Room	Served By	Equipment Type	Room Length	Room Width	Room Area	Room Height	Room Volume	Total CFM Supply	OA CFM Supply	OA %	Air Changes per Hour (supply)	Air Changes per Hour (OA)	# of Portable Filters	Total Effective Air Changes per Hour (ACH_e) with Portable Filter		Notes
First Floor																
129B	-	-	-	-	-	-	-	-	-	-	0.0	0.0	0	N/A	0.0	Room has been opened up and added to Room 129
130	FCU-01	FCU-01	26.8	12.7	340	9.0	3,059	387	50	13%	7.6	1.0	1	8.8	3.7	
131	AHU-01	AHU	20.8	17.5	365	11.7	4,254	108	23	21%	1.5	0.3	1	4.5	0.8	
132	UV	UV	22.5	22.8	512	11.7	5,974	420	50	12%	4.2	0.5	1	4.7	2.1	
Second Floor																
Rm 200	Fan Unit	Fan Unit	30.5	27.5	839	11.0	9,226	200	200	100%	1.3	1.3	1	2.7	1.0	
Rm 201	Fan Unit	Fan Unit	30.5	27.5	839	11.0	9,226	195	195	100%	1.3	1.3	1	2.7	1.0	
Rm 202	Fan Unit	Fan Unit	30.5	27.5	839	11.0	9,226	175	175	100%	1.1	1.1	1	2.6	0.9	
Rm 203	Fan Unit	Fan Unit	30.5	27.5	839	10.5	8,807	180	180	100%	1.2	1.2	1	2.8	1.0	
													ļ			
													ļ			

Date: 4/20/2021

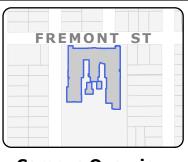
Readings By: Kevin E.

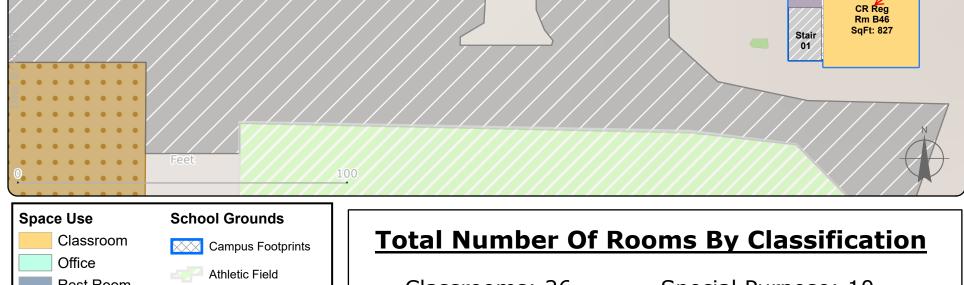



Neudorfer Engineers, Inc. Consulting Engineers Seattle, Washington - Portland, Oregon

NE BB www.NeudorferEngineers.com

Project:	Portland Public Schools Airflow Testing
Location:	Alameda ES; 2732 NE Fremont St, Portland, OR 97212
NOTE #	
NOTE #	NOTE DESCRIPTION Room 142 - UV was producing large amounts of heat, would not respond to thermostat.
2	Room 142 - 00 was producing large amounts of near, would not respond to thermostat. Room 143 - 0 OSA was measured at OSA intake with velgrid. Kfactor is 2.69
2	


ALAMEDA: Lower Level 1

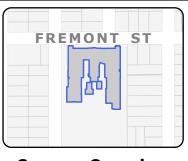


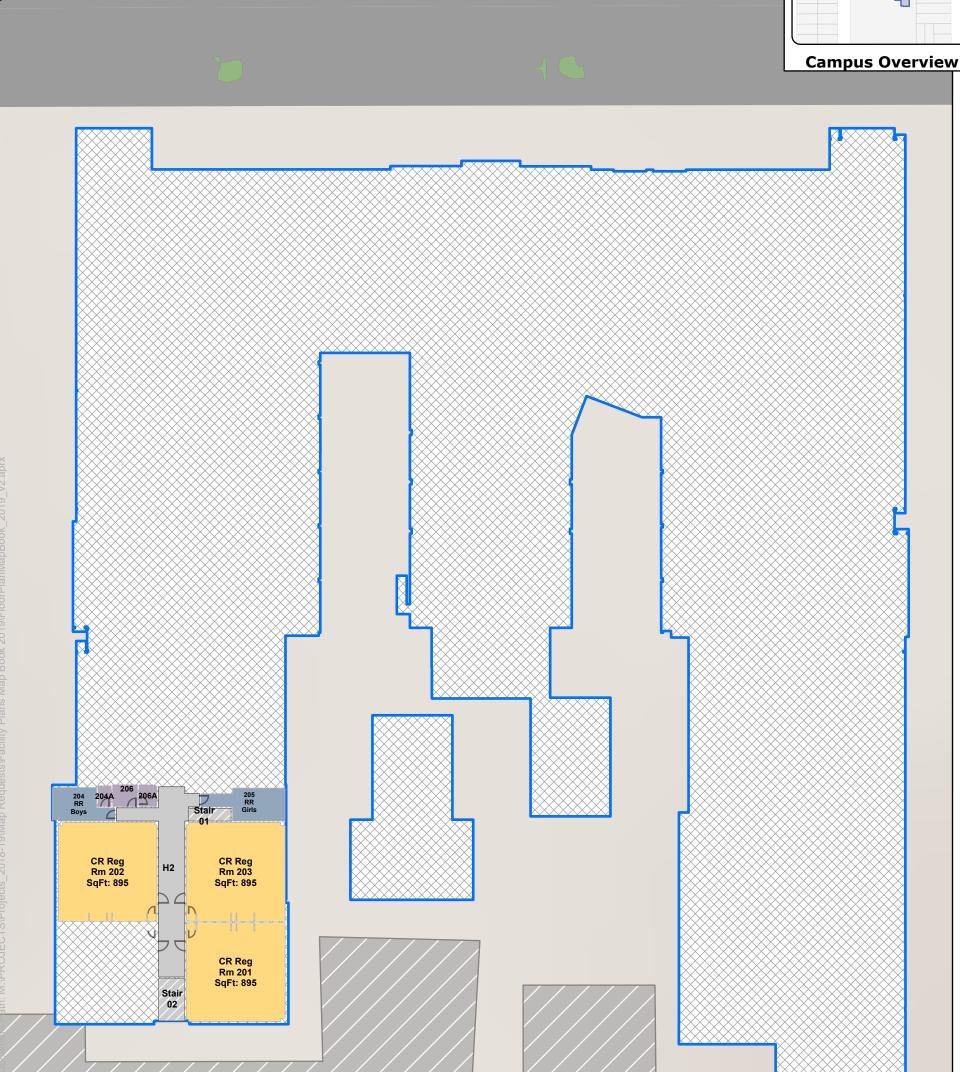
Doors

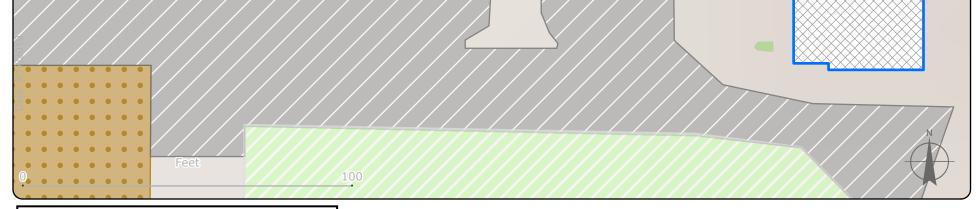
ALAMEDA: First Floor

Campus Overview <u>NM</u> Conf. CR Reg Conf. Conf. Room 1300 130A Rm 134 CR Art Rm 116 Room 122 Room SqFt: 811 130D 132 SqFt: 2954 Conf. 124 RR 130 122A Room 1,26 **O**nise 130B U M D \mathcal{D} Σ \leq 125B Δ Ũ U 117 RR Girls 127 129A Hf 123 133 RR Boys 119 131 121 114 RR ADA CR Reg Rm 110 SqFt: 796 M CR Reg Rm 136 M V SqFt: 808 129B L VVV 129C RR Unisex 129D 129 6 135 CR Reg Rm 115 113 SqFt: 933 D Auditorium CR Reg Rm 108 CR Reg 10 Rm 138 SqFt: 789 \Box VVV SqFt: 808 CR Reg Rm 111 D 109 Σ 3 SqFt: 865 Gym 137 107A CR Reg CR Reg D Rm 106 SqFt: 848 CR Reg Rm 140 Rm 107 SqFt: 1030 Stage 125A SqFt: 830 Σ \Box Σ 105B พ M て Δ CR Comp CR Reg Rm 140B SqFt: 933 CR Reg CR Reg Rm 105 SqFt: 1066 Rm 139 SqFt: 1137 Rm 104 SqFt: 974 **CR Modular** Rm P1 💪 139A SqFt: 875 É Z Stair 209 02 206 D 2 **CR Perfm** Rm P2 \sim SqFt: 1681 CR Reg Rm 141 CR Reg Rm 142 CR Reg Rm 102 H1 CR Reg Rm 103 SqFt: 824 SqFt: 824 SqFt: 895 SqFt: 895 ⊇ B41 1 Rm 144? Rm 143? CR Reg Rm B43 CR Reg Rm B44 CR Reg CR Reg SqFt: 825 SqFt: 826 Rm 100 Rm 101 SqFt: 894 SqFt: 894 Stair 03 Λ ⊃ 146 RR Boys B42

Classrooms: 26


Special Purpose: 10


Rm 146?


Office Spaces: 11


Storage: 9

ALAMEDA: Second Floor

Total Number Of Rooms By Classification

Classrooms: 3 Special Purpose: 0

Office Spaces: 0

Storage: 2