Lead Paint Hazard Assessment
Hayhurst Elementary School
B-Classrooms 14 and 15
5037 SW Iowa Street, Portland, OR

Prepared for:
Portland Public Schools
501 N Dixon Street
Portland, Oregon 97227

September 2016
Project No. 06500.714
LEAD PAINT HAZARD ASSESSMENT

Performed at
Hayhurst Elementary School
B-Classrooms 14 and 15
5037 SW Iowa St, Portland, OR

Prepared for:
Portland Public Schools

This lead paint hazard assessment is for the exclusive use of the Client and/or building owner and is not to be photographed, photocopied, or similarly reproduced, in total or in part, without the expressed written consent of the Client and/or building owner.

Prepared by
PBS Engineering and Environmental Inc.
4412 SW Corbett Ave, Portland, Oregon 97239
TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY .. 1
2.0 SCOPE OF THE ASSESSMENT .. 1
3.0 BACKGROUND .. 1
4.0 DEFINITIONS ... 2
5.0 SAMPLING ... 3
 5.1 XRF Sampling .. 3
 5.2 Dust Sampling ... 3
 5.3 Bulk Paint-Chip Sampling .. 3
6.0 LIMITATIONS OF SCOPE .. 3

SUPPORTING DATA

TAB 1 – TABLES
Table 1 - HUD Guideline Categories of Paint Deterioration
Table 2 - XRF Data Sheet and Condition Assessment
Table 3 - Lead Dust Wipe Sample Results
Table 4 - Bulk Paint Chip Sample Results

TAB 2 – SAMPLING INVENTORIES AND LABORATORY REPORTS
Lead Dust Wipe
Lead Bulk Paint Chip

TAB 3 – CERTIFICATIONS
Risk Assessor / Certified Industrial Hygienist
Consulting Firm
Analytical Laboratory
1.0 EXECUTIVE SUMMARY

PBS Engineering and Environmental Inc. (PBS) recently performed a lead hazard assessment at Hayhurst Elementary School, B-classrooms 14 and 15, in Portland, Oregon. This service was performed because of concerns regarding potential lead exposures associated with lead paint in these rooms.

The following is a summary of findings:

- PBS performed a visual assessment of painted and varnished surfaces in the aforementioned classrooms. Most painted surfaces appeared to be in good or fair condition with minor contact damage. PBS did find the varnished surfaces of the lower cabinet faces around the sinks and painted window sashes and bases to be in poor condition. Paint and varnish conditions were assessed using US Department of Housing and Urban Development (HUD) guidelines, as shown in Table 1. The condition assessment is presented in Table 2, attached to this report.

- A total of forty-four (44) surface readings using a X-Ray Fluorescence Analyzer (XRF) were collected in both rooms. No painted or varnished surfaces were identified as lead-based paint. The complete list of surface readings is presented in Table 2 attached to this report.

- A total of fourteen (14) dust wipe samples were collected from floors, windowsills, window troughs, and desks. Twelve (12) of the samples collected were below the limits of detection. Two (2) samples collected in window troughs contained 15,000 and 20,000 micrograms per square foot (µg/ft²) of lead. As a result of the testing, no lead dust hazards were identified within the functional space of the rooms on interior surfaces tested; however, results indicate that there is a lead dust hazard within the window troughs. The complete list of surfaces wiped is presented in Table 3, attached to this report.

- A total of two (2) bulk paint chip samples were collected from the window sashes. The concentration of lead in the samples are 10,000 parts per million and 12,000 parts per million (PPM). These components are considered lead-based paint. The list of components tested is presented in Table 4, attached to this report.

Based on the findings of this investigation, paint found in poor condition should be stabilized and window troughs need to be cleaned. PBS recommends that the windows remain closed until an Oregon Health Division certified abatement firm using certified workers can clean the window troughs and surrounding interior and exterior surfaces. After cleaning, a certified renovation repair and painting (RRP) contractor, using lead-safe work practices, should repaint the window components and lower cabinetry in the rooms.

2.0 SCOPE OF THE ASSESSMENT

On September 13, 2016, PBS conducted a lead hazard assessment that included a visual assessment of painted surfaces; XRF testing of major representative building components; bulk paint chip sampling of damaged window sashes; and dust wipe sampling of floors, desktops, window sills, and window troughs in these two rooms. All assessment work was completed by an Oregon Health Authority certified lead risk assessor (CIH). This lead hazard assessment was limited to the B-classrooms 14 and 15 within the building. No other assumptions or conclusions are implied.

3.0 BACKGROUND

Lead-containing paint is ubiquitous in the built environment. As paint degrades over time, lead can be released into the environment. This is a result of the degradation and erosion of lead containing
Lead concentrations upwards of 50 percent were common in older paints while newer paint, since 2009, has been limited to 90 ppm per the Consumer Product Safety Commission (CPSC).

Most lead exposures occur when a person ingests or breaths lead particulate. Lead ingestion typically occurs when a person has lead residues on his or her hands and then transfers those residues to the food he or she eats.

Currently, lead hazards are controlled through various Environmental Protection Agency (EPA) and Department of Housing and Urban Development (HUD) regulations.

Following is a listing of definitions and abbreviated discussions applicable to this project.

4.0 DEFINITIONS

40 CFR 745.103 definition of lead-based paint
Lead-based paint means paint or other surface coatings that contain lead equal to or in excess of 1.0 milligram per square centimeter (1mg/cm2) or 0.5 percent by weight (5,000ppm).

40 CFR 745.65 definitions of lead-based paint hazards
(a) Paint-lead hazard. A paint-lead hazard is any of the following:

(1) Any lead-based paint on a friction surface that is subject to abrasion and where the lead dust levels on the nearest horizontal surface underneath the friction surface (e.g., the window sill, or floor) are equal to or greater than the dust-lead hazard levels identified in paragraph (b) of this section.

(2) Any damaged or otherwise deteriorated lead-based paint on an impact surface that is caused by impact from a related building component (such as a doorknob that knocks into a wall or a door that knocks against its doorframe.

(3) Any chewable lead-based painted surface on which there is evidence of teeth marks.

(4) Any other deteriorated lead-based paint in any residential building or child-occupied facility or on the exterior of any residential building or child-occupied facility.

(b) Dust-lead hazard. A dust-lead hazard is surface dust in a residential dwelling or child-occupied facility that contains a mass-per-area concentration of lead equal to or exceeding 40 µg/ft² on floors or 250 µg/ft² on interior windowsills based on wipe samples.

40 CFR 745.227 Dust lead clearance levels (by wipe sampling)
40 µg/ft² – floors (includes carpeted and uncarpeted interior floors)
250 µg/ft² – interior windowsills
400 µg/ft² – window troughs (previously called “window wells” in some literature)
5.0 SAMPLING

5.1 XRF Sampling
PBS performed surface sampling using a handheld Innovex LBP-4000 X-Ray Fluorescence Analyzer (XRF) to perform an analysis of painted and varnished surfaces. All calibration readings were within the tolerance for this instrument. No substrate correction is required with the Innovex XRF per the instrument’s performance characteristic sheet.

The “side” information presented on the XRF data sheets relates to the side of the rooms where the XRF test spot is located. The risk assessor used the main entry door of each room as the basis to establish side “A”; sides B, C, and D follow in clockwise rotation.

5.2 Dust Sampling
The purpose of dust sampling is to determine the lead concentration in settled dust. Dust is an important pathway for childhood exposure to lead. Children can be exposed to leaded dust by inhalation or ingestion. Ingestion of leaded dust is a common pathway, especially for kids six years old and younger, during normal hand to mouth activities involving their fingers or toys that have come in contact with leaded dusts.

Wipe sampling is the recommended method for collecting surface dust samples. Dust samples are typically collected from floors near friction and impact spots or areas of deteriorated paint, interior windowsills, and window troughs. Cabinets, shelves, and tabletops may also be sampled if there is reason to suspect a surface dust hazard may exist caused by friction, impact points, or from areas of deteriorated paint nearby.

Dust wipes were collected in accordance with EPA 747-R-95-001, Residential Sampling for Lead: Protocols for Dust and Soil Sampling. All wipe samples were analyzed using EPA Method SW846-7000B, flame atomic absorption. Sample collection results and their locations are presented in Table 3.

5.3 Bulk Paint-Chip Sampling
A total of two bulk paint-chip verification samples were collected from damaged painted window component surfaces. Representative paint-chip samples were submitted to a qualified lab for analysis by atomic absorption via EPA Method 7420. Bulk paint-chip sample laboratory results are presented in Table 4.

6.0 LIMITATIONS OF SCOPE
This study was limited to the tests and locations as indicated above. The site as a whole may have other environmental concerns that will not be characterized by this study. Further study may be recommended. The findings and conclusions of this work are not scientific certainties or probabilities based on professional judgment concerning the significance of the data gathered during the course of this investigation. PBS is not able to represent conditions on the site or adjoining sites beyond those conditions detected or observed by PBS.
CERTIFICATIONS

OHA Certified Risk Assessor (#1806)
Certified Industrial Hygienist (CIH)
Clark Nelson

Signature

09.15.2016

Certifying Firm
PBS Engineering and Environmental Inc.
4412 SW Corbett Ave.
Portland, Oregon 97239
Phone: 503.248.1939

Certification No: 1038-LBP FIRM
Expiration Date: 9/3/2016

Certified Laboratory
R.J. Lee Group, Inc
350 Hochberg Road
Monroeville, Pennsylvania 15146
Phone: 724.325.1776

AIHA ELLAP Certification No: 100364
TAB 1

Tables
- Table 1 - HUD Guideline Categories of Paint Deterioration
- Table 2 - XRF Data Sheet and Condition Assessment
- Table 3 - Lead Dust Wipe Sample Results
- Table 4 - Bulk Paint Chip Sample Results
Table 1. HUD Guideline Categories of Paint Deterioration

<table>
<thead>
<tr>
<th>Type of Building Component</th>
<th>Intact</th>
<th>Fair</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior components with large surface areas</td>
<td>Entire surface is intact</td>
<td>Less than or equal to 10 square feet</td>
<td>More than 10 square feet</td>
</tr>
<tr>
<td>Interior components with large surface areas (walls, ceilings, floors, doors)</td>
<td>Entire surface is intact</td>
<td>Less than or equal to 2 square feet</td>
<td>More than 2 square feet</td>
</tr>
<tr>
<td>Interior and exterior components with small surface areas (windowsills, baseboards, soffits, trim)</td>
<td>Entire surface is intact</td>
<td>Less than or equal to 10 percent of the total surface area of the component</td>
<td>More than 10 percent of the total surface area of the component</td>
</tr>
<tr>
<td>ID #</td>
<td>Room</td>
<td>Side</td>
<td>Structure</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
<td>Standardization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Calibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Calibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Calibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14 A Wall</td>
<td>A</td>
<td>Upper</td>
</tr>
<tr>
<td>6</td>
<td>14 A Wall</td>
<td>A</td>
<td>Lower</td>
</tr>
<tr>
<td>7</td>
<td>14 B Wall</td>
<td>B</td>
<td>Upper</td>
</tr>
<tr>
<td>8</td>
<td>14 B Wall</td>
<td>B</td>
<td>Lower</td>
</tr>
<tr>
<td>9</td>
<td>14 C Wall</td>
<td>C</td>
<td>Upper</td>
</tr>
<tr>
<td>10</td>
<td>14 C Wall</td>
<td>C</td>
<td>Lower</td>
</tr>
<tr>
<td>11</td>
<td>14 D Wall</td>
<td>D</td>
<td>Upper</td>
</tr>
<tr>
<td>12</td>
<td>14 D Wall</td>
<td>D</td>
<td>Lower</td>
</tr>
<tr>
<td>13</td>
<td>14 D Door</td>
<td>D</td>
<td>Face</td>
</tr>
<tr>
<td>14</td>
<td>14 D Door</td>
<td>D</td>
<td>Jamb</td>
</tr>
<tr>
<td>15</td>
<td>14 A Closet</td>
<td>A</td>
<td>Face</td>
</tr>
<tr>
<td>16</td>
<td>14 A Cabinet</td>
<td>A</td>
<td>Lower</td>
</tr>
<tr>
<td>17</td>
<td>14 B Window</td>
<td>B</td>
<td>Frame</td>
</tr>
<tr>
<td>18</td>
<td>14 B Window</td>
<td>B</td>
<td>Base</td>
</tr>
<tr>
<td>19</td>
<td>14 B Window</td>
<td>B</td>
<td>Sash</td>
</tr>
<tr>
<td>20</td>
<td>14 B Window</td>
<td>B</td>
<td>Radiator</td>
</tr>
<tr>
<td>21</td>
<td>14 B Bookshelf</td>
<td>B</td>
<td>Top</td>
</tr>
<tr>
<td>22</td>
<td>14 B Window</td>
<td>B</td>
<td>Exterior</td>
</tr>
<tr>
<td>23</td>
<td>14 C Elect Conduit</td>
<td>C</td>
<td>Metal</td>
</tr>
<tr>
<td>24</td>
<td>14 D HVAC</td>
<td>D</td>
<td>Defusier</td>
</tr>
<tr>
<td>25</td>
<td>14 Ceiling</td>
<td></td>
<td>Beam</td>
</tr>
<tr>
<td>26</td>
<td>14 Ceiling</td>
<td></td>
<td>Tile</td>
</tr>
<tr>
<td>27</td>
<td>15 A Wall</td>
<td>A</td>
<td>Upper</td>
</tr>
<tr>
<td>28</td>
<td>15 A Wall</td>
<td>A</td>
<td>Lower</td>
</tr>
<tr>
<td>29</td>
<td>15 A Wall</td>
<td>A</td>
<td>Upper</td>
</tr>
<tr>
<td>30</td>
<td>15 B Wall</td>
<td>B</td>
<td>Lower</td>
</tr>
<tr>
<td>31</td>
<td>15 C Wall</td>
<td>C</td>
<td>Upper</td>
</tr>
<tr>
<td>32</td>
<td>15 C Wall</td>
<td>C</td>
<td>Lower</td>
</tr>
<tr>
<td>33</td>
<td>15 D Wall</td>
<td>D</td>
<td>Upper</td>
</tr>
<tr>
<td>34</td>
<td>15 D Wall</td>
<td>D</td>
<td>Lower</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>35</td>
<td>15</td>
<td>D</td>
<td>Entry door</td>
</tr>
<tr>
<td>36</td>
<td>15</td>
<td>D</td>
<td>Entry door</td>
</tr>
<tr>
<td>37</td>
<td>15</td>
<td>A</td>
<td>Cabinet</td>
</tr>
<tr>
<td>38</td>
<td>15</td>
<td>A</td>
<td>Cabinet</td>
</tr>
<tr>
<td>39</td>
<td>15</td>
<td>B</td>
<td>Window</td>
</tr>
<tr>
<td>40</td>
<td>15</td>
<td>B</td>
<td>Window</td>
</tr>
<tr>
<td>41</td>
<td>15</td>
<td>B</td>
<td>Window</td>
</tr>
<tr>
<td>42</td>
<td>15</td>
<td>B</td>
<td>Window</td>
</tr>
<tr>
<td>43</td>
<td>15</td>
<td>B</td>
<td>Window</td>
</tr>
<tr>
<td>44</td>
<td>15</td>
<td>B</td>
<td>Book shelf</td>
</tr>
<tr>
<td>45</td>
<td>15</td>
<td>C</td>
<td>Elect Conduit</td>
</tr>
<tr>
<td>46</td>
<td>15</td>
<td>D</td>
<td>HVAC Defusier</td>
</tr>
<tr>
<td>47</td>
<td>15</td>
<td>Ceiling Beam</td>
<td>Wood</td>
</tr>
<tr>
<td>48</td>
<td>15</td>
<td>Ceiling Tile</td>
<td>Firtex</td>
</tr>
<tr>
<td>49</td>
<td>Calibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Calibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Calibration</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(mg/cm²) = milligrams per centimeter squared
<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Location</th>
<th>Description</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>6500.714-2001</td>
<td>Room 14; Outside in hallway</td>
<td>Floor</td>
<td><20 µg/ft²</td>
</tr>
<tr>
<td>6500.714-2002</td>
<td>Room 14; In front of sink area</td>
<td>Floor (Wall A)</td>
<td><20 µg/ft²</td>
</tr>
<tr>
<td>6500.714-2003</td>
<td>Room 14; In front of bookshelf</td>
<td>Floor (Wall B)</td>
<td><20 µg/ft²</td>
</tr>
<tr>
<td>6500.714-2004</td>
<td>Room 14; Top of bookshelf</td>
<td>Laminate surface (Wall C)</td>
<td><20 µg/ft²</td>
</tr>
<tr>
<td>6500.714-2005</td>
<td>Room 14; Window sill</td>
<td>(Wall C)</td>
<td><20 µg/ft²</td>
</tr>
<tr>
<td>6500.714-2006</td>
<td>Room 14; Window trough</td>
<td>(Wall C)</td>
<td>15,000 µg/ft²</td>
</tr>
<tr>
<td>6500.714-2007</td>
<td>Room 14; Student desk</td>
<td>Center of room</td>
<td><20 µg/ft²</td>
</tr>
<tr>
<td>6500.714-2008</td>
<td>Room 15; Outside in hallway</td>
<td>Floor</td>
<td><20 µg/ft²</td>
</tr>
<tr>
<td>6500.714-2009</td>
<td>Room 15; In front of sink</td>
<td>Floor (Wall A)</td>
<td><20 µg/ft²</td>
</tr>
<tr>
<td>6500.714-2010</td>
<td>Room 15; In front of bookshelf</td>
<td>Floor (Wall B)</td>
<td><20 µg/ft²</td>
</tr>
<tr>
<td>6500.714-2011</td>
<td>Room 15; Top of bookshelf</td>
<td>Laminate surface (Wall C)</td>
<td><20 µg/ft²</td>
</tr>
<tr>
<td>6500.714-2012</td>
<td>Room 15; Window sill</td>
<td>(Wall C)</td>
<td><20 µg/ft²</td>
</tr>
<tr>
<td>6500.714-2013</td>
<td>Room 15; Window trough</td>
<td>(Wall C)</td>
<td>20,000 µg/ft²</td>
</tr>
<tr>
<td>6500.714-2014</td>
<td>Room 15; Play table</td>
<td>Center of room</td>
<td><20 µg/ft²</td>
</tr>
<tr>
<td>6500.714-2015</td>
<td>999-2003; Spike</td>
<td>Q.C.</td>
<td>1,000 µg/ft²</td>
</tr>
</tbody>
</table>
Table 4. Lead-Based Paint Sampling Results

<table>
<thead>
<tr>
<th>Location</th>
<th>Component</th>
<th>Substrate</th>
<th>Color</th>
<th>Lead (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room 14</td>
<td>Window Sash</td>
<td>Wood</td>
<td>White</td>
<td>10,000</td>
</tr>
<tr>
<td>Room 15</td>
<td>Window Sash</td>
<td>Wood</td>
<td>White</td>
<td>12,000</td>
</tr>
</tbody>
</table>

ppm – part per million
TAB 2
Sample Inventory and laboratory Reports
Lead Dust Wipe
Lead Bulk Paint Chip
<table>
<thead>
<tr>
<th>Code</th>
<th>Material</th>
<th>Analysis</th>
<th>Location</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB06500.714-1001</td>
<td>Paint</td>
<td>10,000 ppm</td>
<td>B-classroom 14; window sash, wood, white, fair</td>
<td>R.J. Lee Group</td>
</tr>
<tr>
<td>LB06500.714-1002</td>
<td>Paint</td>
<td>12,000 ppm</td>
<td>B-classroom 15; window sash, wood, white, poor</td>
<td>R.J. Lee Group</td>
</tr>
</tbody>
</table>
LABORATORY REPORT

RJ Lee Group Job No.: PA090920160004
Samples Received: September 9, 2016
Report Date: September 12, 2016
Client Project: 06500.714 Phase 0002
Purchase Order No.: N/A
Matrix: Solid
Prep/Analysis: EPA 3050B / EPA 7000B-Paint

<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>RJ Lee Group ID</th>
<th>Sampling Date</th>
<th>Analyte</th>
<th>Sample Concentration</th>
<th>Minimum Reporting Limit</th>
<th>Analysis Date</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB06500.714-1001</td>
<td>PA090920160004-001</td>
<td>NP</td>
<td>Lead</td>
<td>1.00</td>
<td>10000</td>
<td>0.015</td>
<td>150</td>
</tr>
<tr>
<td>LB06500.714-1002</td>
<td>PA090920160004-002</td>
<td>NP</td>
<td>Lead</td>
<td>1.2</td>
<td>12000</td>
<td>0.00100</td>
<td>100</td>
</tr>
</tbody>
</table>

Comments:

These results are submitted pursuant to RJ Lee Group’s current terms and conditions of sale, including the company’s standard warranty and limitation of liability provisions. No responsibility or liability is assumed for the manner in which the results are used or interpreted. Unless notified in writing to return the samples covered by this report, RJ Lee Group will store the samples for a period of thirty (30) days before discarding. A shipping and handling fee will be assessed for the return of any samples.

Unless otherwise noted (either in the comments section of the report and/or with the appropriate qualifiers under the report qualifiers (Q) column) the following apply: (a) Samples were received in good condition, (b) All QC samples are within acceptable established limits, (c) All samples designated as NELAP meet the requirements of the NELAC standard; if not applicable qualifiers will be used to designate the non-compliance and (d) Results have not been blank corrected. Quality Control data is available upon request.
TRANSMITTAL AND CHAIN OF CUSTODY FOR LEAD BULK SAMPLES

Project No.: 06500.714 **Phase:** 0002

Individuals signing this form warrant that the information provided is correct and complete. The Sender should keep a copy and send the original. The Receiver should complete the form, keep a copy and return the original to the Sender. Receiver shall report damage of package immediately to Sender.

SENDER

Date Sent: September 08, 2016

PBS Engineering and Environmental Inc.
4412 SW Corbett Avenue
Portland, OR 97239
503.248.1939, Fax: 866.727.0140

<table>
<thead>
<tr>
<th>Name</th>
<th>Authorized Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hailey Edmeades</td>
<td>Edmeades</td>
<td>9/8/16</td>
</tr>
</tbody>
</table>

RECEIVER

Date Received: September 09, 2016

Company: R.J. Lee Group
Address: 350 Hochberg Road
Monroeville, PA 15146
724-325-1776

<table>
<thead>
<tr>
<th>Name</th>
<th>Authorized Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sender's ID No.
LB06500.714-1001
LB06500.714-1002

Brief Description

Receiver's ID No.

ANALYSIS REQUESTED:

- [x] Paint
- [] Wipe
- [] Soil/Misc.
- [] Air
- [] TCLP

Please analyze the enclosed 2 sample(s) for LEAD content using Atomic Absorption Method. PBS requests prior notification if samples will be disposed.

TURNAROUND DESIRED:

24 Hour

SPECIAL INSTRUCTIONS:

[SD]
<table>
<thead>
<tr>
<th>Code</th>
<th>Material</th>
<th>Analysis</th>
<th>Location</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB06500.714-2001</td>
<td>WIPE</td>
<td><20 µg/sf</td>
<td>Room 14; outside in hallway, floor</td>
<td>R.J. Lee Group</td>
</tr>
<tr>
<td>LB06500.714-2002</td>
<td>WIPE</td>
<td><20 µg/sf</td>
<td>Room 14; in front of sink area, floor (wall A)</td>
<td>R.J. Lee Group</td>
</tr>
<tr>
<td>LB06500.714-2003</td>
<td>WIPE</td>
<td><20 µg/sf</td>
<td>Room 14; in front of bookshelf, floor (wall B)</td>
<td>R.J. Lee Group</td>
</tr>
<tr>
<td>LB06500.714-2004</td>
<td>WIPE</td>
<td><20 µg/sf</td>
<td>Room 14; top of bookshelf, laminate surface (wall C)</td>
<td>R.J. Lee Group</td>
</tr>
<tr>
<td>LB06500.714-2005</td>
<td>WIPE</td>
<td><40 µg/sf</td>
<td>Room 14; window sill (wall C)</td>
<td>R.J. Lee Group</td>
</tr>
<tr>
<td>LB06500.714-2006</td>
<td>WIPE</td>
<td>15,000 µg/sf</td>
<td>Room 14; window trough (wall C)</td>
<td>R.J. Lee Group</td>
</tr>
<tr>
<td>LB06500.714-2007</td>
<td>WIPE</td>
<td><20 µg/sf</td>
<td>Room 14; student desk, center of room</td>
<td>R.J. Lee Group</td>
</tr>
<tr>
<td>LB06500.714-2008</td>
<td>WIPE</td>
<td><20 µg/sf</td>
<td>Room 15; outside in hallway, floor</td>
<td>R.J. Lee Group</td>
</tr>
<tr>
<td>LB06500.714-2009</td>
<td>WIPE</td>
<td><20 µg/sf</td>
<td>Room 15; in front of sink, floor (wall A)</td>
<td>R.J. Lee Group</td>
</tr>
<tr>
<td>LB06500.714-2010</td>
<td>WIPE</td>
<td><20 µg/sf</td>
<td>Room 15; in front of bookshelf, floor (wall B)</td>
<td>R.J. Lee Group</td>
</tr>
<tr>
<td>LB06500.714-2011</td>
<td>WIPE</td>
<td><20 µg/sf</td>
<td>Room 15; top of bookshelf, laminate surface (wall C)</td>
<td>R.J. Lee Group</td>
</tr>
<tr>
<td>LB06500.714-2012</td>
<td>WIPE</td>
<td><40 µg/sf</td>
<td>Room 15; window sill (wall C)</td>
<td>R.J. Lee Group</td>
</tr>
<tr>
<td>LB06500.714-2013</td>
<td>WIPE</td>
<td>20,000 µg/sf</td>
<td>Room 15; window trough (wall C)</td>
<td>R.J. Lee Group</td>
</tr>
<tr>
<td>LB06500.714-2014</td>
<td>WIPE</td>
<td><20 µg/sf</td>
<td>Room 15; play table (center of room)</td>
<td>R.J. Lee Group</td>
</tr>
<tr>
<td>LB06500.714-2015</td>
<td>WIPE</td>
<td>1000 µg/sf</td>
<td>999-2003; spike</td>
<td>R.J. Lee Group</td>
</tr>
</tbody>
</table>
LABORATORY REPORT

PBS Engineering & Environmental
4412 Southwest Corbett Ave.
Portland, OR 97239

Attn: Hailey Edmeades
Phone: 503-417-7594
Email: hailey.edmeades@pbsenv.com

RJ Lee Group Job No.: PA090920160005
Samples Received: September 9, 2016
Report Date: September 12, 2016
Client Project: 06500.714 Phase 0002
Purchase Order No.: N/A
Matrix: Wipe
Prep/Analysis: EPA 3050B / EPA 7000B (Wipes)-PA

<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>RJ Lee Group ID</th>
<th>Sampling Date</th>
<th>Analyte</th>
<th>Wipe Area (in²)</th>
<th>Sample Concentration</th>
<th>Minimum Reporting Limit</th>
<th>Analysis Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB06500.714-2001</td>
<td>PA090920160005-001</td>
<td>N/A</td>
<td>Lead</td>
<td>72</td>
<td>< 10</td>
<td>< 20</td>
<td>10</td>
</tr>
<tr>
<td>LB06500.714-2002</td>
<td>PA090920160005-002</td>
<td>N/A</td>
<td>Lead</td>
<td>72</td>
<td>< 10</td>
<td>< 20</td>
<td>10</td>
</tr>
<tr>
<td>LB06500.714-2003</td>
<td>PA090920160005-003</td>
<td>N/A</td>
<td>Lead</td>
<td>72</td>
<td>< 10</td>
<td>< 20</td>
<td>10</td>
</tr>
<tr>
<td>LB06500.714-2004</td>
<td>PA090920160005-004</td>
<td>N/A</td>
<td>Lead</td>
<td>72</td>
<td>< 10</td>
<td>< 20</td>
<td>10</td>
</tr>
<tr>
<td>LB06500.714-2005</td>
<td>PA090920160005-005</td>
<td>N/A</td>
<td>Lead</td>
<td>36</td>
<td>< 10</td>
<td>< 40</td>
<td>10</td>
</tr>
<tr>
<td>LB06500.714-2006</td>
<td>PA090920160005-006</td>
<td>N/A</td>
<td>Lead</td>
<td>28.8</td>
<td>3000</td>
<td>15000</td>
<td>10</td>
</tr>
<tr>
<td>LB06500.714-2007</td>
<td>PA090920160005-007</td>
<td>N/A</td>
<td>Lead</td>
<td>72</td>
<td>< 10</td>
<td>< 20</td>
<td>10</td>
</tr>
<tr>
<td>LB06500.714-2008</td>
<td>PA090920160005-008</td>
<td>N/A</td>
<td>Lead</td>
<td>72</td>
<td>< 10</td>
<td>< 20</td>
<td>10</td>
</tr>
<tr>
<td>LB06500.714-2009</td>
<td>PA090920160005-009</td>
<td>N/A</td>
<td>Lead</td>
<td>72</td>
<td>< 10</td>
<td>< 20</td>
<td>10</td>
</tr>
<tr>
<td>LB06500.714-2010</td>
<td>PA090920160005-010</td>
<td>N/A</td>
<td>Lead</td>
<td>72</td>
<td>< 10</td>
<td>< 20</td>
<td>10</td>
</tr>
</tbody>
</table>

Attn: Philip Grindle
Laboratory Supervisor
LABORATORY REPORT

PBS Engineering & Environmental
4412 Southwest Corbett Ave.
Portland, OR 97239

Attn: Hailey Edmeades
Phone: 503-417-7594

Email: hailey.edmeades@pbsenv.com

<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>RJ Lee Group ID</th>
<th>Sampling Date</th>
<th>Analyte</th>
<th>Wipe Area (in²)</th>
<th>Sample Concentration</th>
<th>Minimum Reporting Limit</th>
<th>Analysis Date</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB06500.714-2011</td>
<td>PA090920160005-011</td>
<td>N/A</td>
<td>Lead</td>
<td>72</td>
<td>< 10</td>
<td>< 20</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>LB06500.714-2012</td>
<td>PA090920160005-012</td>
<td>N/A</td>
<td>Lead</td>
<td>36</td>
<td>< 10</td>
<td>< 40</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>LB06500.714-2013</td>
<td>PA090920160005-013</td>
<td>N/A</td>
<td>Lead</td>
<td>28.8</td>
<td>3900</td>
<td>20000</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>LB06500.714-2014</td>
<td>PA090920160005-014</td>
<td>N/A</td>
<td>Lead</td>
<td>72</td>
<td>< 10</td>
<td>< 20</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>LB06500.714-2015</td>
<td>PA090920160005-015</td>
<td>N/A</td>
<td>Lead</td>
<td>144</td>
<td>1000</td>
<td>1000</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Comments: Lead wipe analysis by EPA 7000B is accredited by AIHA-LAP, LLC (Lab ID 100364) and NY-DOH (Lab ID 10884)

Report Qualifiers (Q):
H = Holding times for preparation or analysis exceeded
E = Value above highest calibration standard
J = Estimated Value - Result is below lowest calibration standard.
L = LCS (Laboratory Control Standard)/SRM (Standard Reference Material) recovery outside accepted recovery limits
B = Analyte detected in the associated Method Blank
S = Spike Recovery outside accepted limits
R = RPD (relative percent difference) outside accepted limits
D = RL (reporting limit verification) outside accepted limits
TRANSMITTAL AND CHAIN OF CUSTODY FOR LEAD BULK SAMPLES

Project No.: 06500.714 Phase 0002

Individuals signing this form warrant that the information provided is correct and complete. The Sender should keep a copy and send the original. The Receiver should complete the form, keep a copy and return the original to the Sender. Receiver shall report damage of package immediately to Sender.

SENDER
Date Sent: September 08, 2016

PBS Engineering and Environmental Inc.
4412 SW Corbett Avenue
Portland, OR 97239
503.248.1939, Fax: 866.727.0140

RECEIVER
Date Received: ____________

Company: R.J. Lee Group
Address: 350 Hochberg Road
Monroeville, PA 15146
724-325-1776

<table>
<thead>
<tr>
<th>Sender's ID No.</th>
<th>Brief Description</th>
<th>Receiver's ID No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB06500.714-2001</td>
<td>Lead Wipe Area: .50 S.F</td>
<td></td>
</tr>
<tr>
<td>LB06500.714-2002</td>
<td>Lead Wipe Area: .50 S.F</td>
<td></td>
</tr>
<tr>
<td>LB06500.714-2003</td>
<td>Lead Wipe Area: .50 S.F</td>
<td></td>
</tr>
<tr>
<td>LB06500.714-2004</td>
<td>Lead Wipe Area: .50 S.F</td>
<td></td>
</tr>
<tr>
<td>LB06500.714-2005</td>
<td>Lead Wipe Area: .25 S.F</td>
<td></td>
</tr>
<tr>
<td>LB06500.714-2006</td>
<td>Lead Wipe Area: .20 S.F</td>
<td></td>
</tr>
<tr>
<td>LB06500.714-2007</td>
<td>Lead Wipe Area: .50 S.F</td>
<td></td>
</tr>
<tr>
<td>LB06500.714-2008</td>
<td>Lead Wipe Area: .50 S.F</td>
<td></td>
</tr>
<tr>
<td>LB06500.714-2009</td>
<td>Lead Wipe Area: .50 S.F</td>
<td></td>
</tr>
<tr>
<td>LB06500.714-2010</td>
<td>Lead Wipe Area: .50 S.F</td>
<td></td>
</tr>
<tr>
<td>LB06500.714-2011</td>
<td>Lead Wipe Area: .50 S.F</td>
<td></td>
</tr>
<tr>
<td>LB06500.714-2012</td>
<td>Lead Wipe Area: .25 S.F</td>
<td></td>
</tr>
<tr>
<td>LB06500.714-2013</td>
<td>Lead Wipe Area: .20 S.F</td>
<td></td>
</tr>
<tr>
<td>LB06500.714-2014</td>
<td>Lead Wipe Area: .50 S.F</td>
<td></td>
</tr>
<tr>
<td>LB06500.714-2015</td>
<td>Lead Wipe Area: 1.0 SF</td>
<td></td>
</tr>
</tbody>
</table>
TRANSMITTAL AND CHAIN OF CUSTODY FOR LEAD BULK SAMPLES

<table>
<thead>
<tr>
<th>ANALYSIS REQUESTED:</th>
<th>Please analyze the enclosed 15 sample(s) for LEAD content using Atomic Absorption Method. PBS requests prior notification if samples will be disposed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAD:</td>
<td>Paint</td>
</tr>
<tr>
<td></td>
<td>✓ Wipe</td>
</tr>
<tr>
<td></td>
<td>☐ Soil/Misc.</td>
</tr>
<tr>
<td></td>
<td>☐ Air</td>
</tr>
<tr>
<td></td>
<td>☐ TCLP</td>
</tr>
</tbody>
</table>

Please fax and mail the results to the above address.

TURNAROUND DESIRED:

24 Hour

SPECIAL INSTRUCTIONS:

SD
TAB 3

Certifications
Risk Assessor / Certified Industrial Hygienist
Consulting Firm
Analytical Laboratory
CLARK RICHARD NELSON
4412 SW CORBETT AVE
PORTLAND, OR 97239

CONSTRUCTION CONTRACTORS BOARD
LEAD BASED PAINT
INSPECTOR LICENSE

EXPIRATION DATE: 6/24/2017

This document certifies that
CLARK RICHARD NELSON
4412 SW CORBETT AVE
PORTLAND, OR 97239
is licensed in accordance with Oregon Law as
a Lead Based Paint Inspector.

STATE OF OREGON
CONSTRUCTION CONTRACTORS BOARD
LEAD BASED PAINT
INSPECTOR LICENSE

LICENSE NUMBER: 9151806-I

This document certifies that:
CLARK RICHARD NELSON
4412 SW CORBETT AVE
PORTLAND, OR 97239

is licensed in accordance with Oregon Law as a Lead Based Paint Inspector.

License Details:
LICENSE NO.: 9151806-I
EXPIRATION DATE: 6/24/2017
CLARK RICHARD NELSON
4412 SW CORBETT AVE
PORTLAND, OR 97239

CONSTRUCTION CONTRACTORS BOARD
LEAD BASED PAINT
RISK ASSESSOR LICENSE

EXPIRATION DATE: 6/24/2017

This document certifies that
CLARK RICHARD NELSON
4412 SW CORBETT AVE
PORTLAND, OR 97239

is licensed in accordance with Oregon Law as
a Lead Based Paint Risk Assessor.

STATE OF OREGON
CONSTRUCTION CONTRACTORS BOARD
LEAD BASED PAINT
RISK ASSESSOR LICENSE

LICENSE NUMBER: 9151806-RA

This document certifies that:
CLARK RICHARD NELSON
4412 SW CORBETT AVE
PORTLAND, OR 97239

is licensed in accordance with Oregon Law as a Lead Based Paint Risk Assessor.

License Details:

LICENSE NO.: 9151806-RA
EXPIRATION DATE: 6/24/2017
June 9, 2016

Clark R. Nelson
PBS Engineering and Environmental Inc,
4412 S.W. Corbett Ave
Portland, OR 97239

800 NE Oregon Street, Suite 640
Portland, OR 97232
Phone: (971) 673-0440
Fax: (971) 673-0457
TTY Nonvoice: (971) 673-0372

RE: LEAD-BASED PAINT ACTIVITIES, INDIVIDUAL CERTIFICATION NO. 1806--Indv--R

This letter is your official notification that you have met the certification requirements under Oregon Administrative Rule (OAR) 333-069 to conduct lead-based paint activities in Oregon, in the following disciplines: Risk Assessor; Inspector

In addition to certification by the Oregon Health Authority, you are required to be licensed by the Construction Contractors Board (CCB) if you plan to conduct lead-based paint activities in Oregon. This license is different than, and in addition to, the standard contractor license issued by CCB. Both individuals and firms must obtain this license. For more information on CCB lead-based paint licensing, visit their web site at www.oregon.gov/CCB or call 503-378-4621.

As a certified individual in Oregon, you must meet all the requirements of OAR 333-069, including work practice standards for conducting lead-based paint activities in target housing and child-occupied facilities. As a certified individual, you must perform work under a firm that is certified by the Authority for conducting lead-based paint activities.

You are required to wear the enclosed badge in plain view when conducting lead-based paint activities. Please note that the badge and certificate will expire on 6/30/2017. If you wish to maintain your certification after 6/30/2017, you must submit an application postmarked at least 60 days before expiration and document that your lead-based paint activities training is current.

As a public service the Authority publishes a list of individuals performing lead-based Oregon. The list is distributed statewide to consumers interested in lead-based paint activities. Individuals that are certified by the state are eligible to be on this list.

If you have any questions concerning your certification or other aspects of the Lead-based Paint Activities, please contact program staff at 971-673-0440.

Sincerely,

Ben Maynard
Lead-Based Paint Program
Oregon Health Authority

Enclosures: 1) Badge; 2) Certificate
State of Oregon

Oregon Health Authority

Risk Assessor

Clark R. Nelson

1806-Indv-R

Issuance Date: 6/9/2016
Expiration Date: 6/30/2017

is certified by the Oregon Health Authority to conduct Lead-Based Paint Activities
Inspector

is certified by the Oregon Health Authority to conduct Lead-Based Paint Activities

Clark R. Nelson
Oregon Health Authority
State of Oregon
organized to improve the practice of industrial hygiene
proclaims that

Clark R. Nelson

having met all requirements of education, experience and examination, is hereby certified in the

COMPREHENSIVE PRACTICE
of
INDUSTRIAL HYGIENE

and has the right to use the designations

CERTIFIED INDUSTRIAL HYGIENIST

CIH

Certificate Number 10954 CP
Awarded: November 30, 2015
Expiration Date: June 1, 2021

Chair, ABIH

Chief Executive Officer, ABIH
State of Oregon
Oregon Health Authority

PBS Engineering and Environmental Inc.

is certified by the Oregon Health Authority to conduct Lead-Based Paint Activities

Certification Number: 1038--LBP FIRM
Issuance Date: 5/16/2016
Date of Expiration: 6/30/2017
May 17, 2016

PBS Engineering and Environmental Inc.
4412 SW Corbett Ave
Portland, OR 97239

Attention: Derek May

800 NE Oregon Street, Suite 640
Portland, OR 97232
Phone: (971) 673-0440
Fax: (971) 673-0457
TTY Nonvoice: (971) 673-0372

RE: LEAD-BASED PAINT ACTIVITIES, FIRM CERTIFICATION NO. 1038--LBP FIRM

This letter is your official notification that PBS Engineering and Environmental Inc. has met certification requirements under Oregon Administrative Rules (OAR) 333-069 to conduct lead-based paint activities in Oregon. Please note that the enclosed certificate will expire on 6/30/2017.

In addition to certification by the Oregon Health Authority (Authority), PBS Engineering and Environmental Inc. is required to be licensed by the Construction Contractors Board (CCB) prior to conducting lead-based paint activities in Oregon. This license is different than, and in addition to, the standard contractor license issued by CCB. Both individuals and firms must obtain this license. For more information on CCB lead paint licensing, visit their web site at www.oregon.gov/CCB or call 503-378-4621.

As a firm certified to conduct lead-based paint inspection activities in Oregon, PBS Engineering and Environmental Inc. must meet all requirements set forth in OAR 333-069. It must comply with standards for conducting lead-based paint inspection and/or risk assessment activities in target housing and child-occupied facilities and employ only certified individuals to conduct regulated activities.

As a public service, the Authority publishes a list of firms performing lead-based paint activities in Oregon. The list is distributed statewide to consumers interested in lead-based paint services. Only those firms that are certified by the state are eligible to be on this list.

If you have any questions concerning this certification or other aspects of the Lead-Based Paint Program, please contact program staff at (971) 673-0440.

Sincerely,

Ben Maynard
Lead-Based Paint Program
Oregon Health Authority

This document can be obtained in an alternate format by calling: (971) 673-0440.
CONSTRUCTION CONTRACTORS BOARD
LEAD INSPECTION CONTRACTORS LICENSE
LICENSE No.: LBPI129143
EXPIRATION DATE: 7/31/2017

This document certifies that:

PBS ENGINEERING & ENVIRONMENTAL INC
4412 SW CORBETT
PORTLAND OR 97239
is licensed in accordance with Oregon Law as a Lead Inspection Contractor.

STATE OF OREGON
CONSTRUCTION CONTRACTORS BOARD
LEAD INSPECTION CONTRACTORS LICENSE
LICENSE NUMBER: LBPI129143

This document certifies that:

PBS ENGINEERING & ENVIRONMENTAL INC
4412 SW CORBETT
PORTLAND OR 97239

is licensed in accordance with Oregon Law as a Lead Inspection Contractor.

License Details:
LBPI LICENSE NO.: LBPI129143
EXPIRATION DATE: 7/31/2017
AIHA Laboratory Accreditation Programs, LLC

acknowledges that

RJ Lee Group, Inc.
350 Hochberg Road, Monroeville, PA 15146
Laboratory ID: 100364

along with all premises from which key activities are performed, as listed above, has fulfilled the requirements of the AIHA Laboratory Accreditation Programs (AIHA-LAP), LLC accreditation to the ISO/IEC 17025:2005 international standard, General Requirements for the Competence of Testing and Calibration Laboratories in the following:

LABORATORY ACCREDITATION PROGRAMS

- **INDUSTRIAL HYGIENE** Accreditation Expires: 02/01/2018
- **ENVIRONMENTAL LEAD** Accreditation Expires: 02/01/2018
- **ENVIRONMENTAL MICROBIOLOGY** Accreditation Expires:
- **FOOD** Accreditation Expires:
- **UNIQUE SCOPES** Accreditation Expires:

Specific Field(s) of Testing (FoT)/Method(s) within each Accreditation Program for which the above named laboratory maintains accreditation is outlined on the attached Scope of Accreditation. Continued accreditation is contingent upon successful on-going compliance with ISO/IEC 17025:2005 and AIHA-LAP, LLC requirements. This certificate is not valid without the attached Scope of Accreditation. Please review the AIHA-LAP, LLC website (www.aihaaccreditedlabs.org) for the most current Scope.

Gerald Schultz, CIH
Chairperson, Analytical Accreditation Board

Cheryl O. Morton
Managing Director, AIHA Laboratory Accreditation Programs, LLC

Revision 14: 03/26/2014

Date Issued: 01/29/2016
The laboratory is approved for those specific field(s) of testing/methods listed in the table below. Clients are urged to verify the laboratory’s current accreditation status for the particular field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

The EPA recognizes the AIHA-LAP, LLC ELLAP program as meeting the requirements of the National Lead Laboratory Accreditation Program (NLLAP) established under Title X of the Residential Lead-Based Paint Hazard Reduction Act of 1992 and includes paint, soil and dust wipe analysis. Air analysis is not included as part of the NLLAP.

Environmental Lead Laboratory Accreditation Program (ELLAP)

Initial Accreditation Date: 12/05/1995

<table>
<thead>
<tr>
<th>Field of Testing (FoT)</th>
<th>Technology sub-type/Detector</th>
<th>Method</th>
<th>Method Description (for internal methods only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paint</td>
<td></td>
<td>EPA SW-846 3050B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPA SW-846 7000B</td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td></td>
<td>EPA SW-846 3050B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPA SW-846 7000B</td>
<td></td>
</tr>
<tr>
<td>Settled Dust by Wipe</td>
<td></td>
<td>EPA SW-846 3050B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPA SW-846 7000B</td>
<td></td>
</tr>
<tr>
<td>Airborne Dust</td>
<td></td>
<td>NIOSH 7082</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NIOSH 7300</td>
<td></td>
</tr>
</tbody>
</table>

A complete listing of currently accredited Environmental Lead laboratories is available on the AIHA-LAP, LLC website at: http://www.aihaaccreditedlabs.org